4,801 research outputs found

    The Schr\"odinger formulation of the Feynman path centroid density

    Full text link
    We present an analysis of the Feynman path centroid density that provides new insight into the correspondence between the path integral and the Schr\"odinger formulations of statistical mechanics. The path centroid density is a central concept for several approximations (centroid molecular dynamics, quantum transition state theory, and pure quantum self-consistent harmonic approximation) that are used in path integral studies of thermodynamic and dynamical properties of quantum particles. The centroid density is related to the quasi-static response of the equilibrium system to an external force. The path centroid dispersion is the canonical correlation of the position operator, that measures the linear change in the mean position of a quantum particle upon the application of a constant external force. At low temperatures, this quantity provides an approximation to the excitation energy of the quantum system. In the zero temperature limit, the particle's probability density obtained by fixed centroid path integrals corresponds to the probability density of minimum energy wave packets, whose average energy define the Feynman effective classical potential.Comment: 29 pages, 2 figures, 1 Table, J. Chem. Phys. (in press

    FRW in cosmological self-creation theory: Hamiltonian approach

    Full text link
    We use the Brans-Dicke theory from the framework of General Relativity (Einstein frame), but now the total energy momentum tensor fulfills the following condition [1ϕ(8πTμν(M)+Tμν(ϕ))];ν=0\rm[\frac{1}{\phi}(8\pi T^{\mu \nu (M)}+T^{\mu\nu (\phi)})]_{;\nu}=0. We take as a first model the flat FRW metric in the Hamilton-Jacobi scheme and we present the Lagrange-Charpit approach in order to find classical solutions. In the quantum scheme, once we determine the characteristic surfaces, the quantum solution is obtained. These two classes of solutions are found for all values of the barotropic parameter γ\gamma.Comment: 9 pages, latex2e. arXiv admin note: substantial text overlap with arXiv:1206.541

    Willingness to Comply with Corporate Law: An Interdisciplinary Teaching Method in Higher Education

    Get PDF
    Using an innovation training project, an interdisciplinary cross-sectional teaching strategy was developed to enhance students’ willingness to comply with the law. Thirty-five business, finance and accounting teachers examined the effects of ethical education on 484 university students’ willingness to comply with corporate law. Ethical education was based on building students’ ethical decisions on three court judgments in the new Spanish Corporate Governance Code. The ethical training was carried out by developing and applying social justice counter arguments. This perspective allowed students to imagine what decisions other person could have taken if they had managed the company ethically. The results suggest that ethics education in higher education can improve the willingness to comply the law. This methodology can be applied to interdisciplinary departments teaching ethics in business, finance and accounting

    Exponentially small asymptotic formulas for the length spectrum in some billiard tables

    Get PDF
    Let q≥3q \ge 3 be a period. There are at least two (1,q)(1,q)-periodic trajectories inside any smooth strictly convex billiard table, and all of them have the same length when the table is an ellipse or a circle. We quantify the chaotic dynamics of axisymmetric billiard tables close to their borders by studying the asymptotic behavior of the differences of the lengths of their axisymmetric (1,q)(1,q)-periodic trajectories as q→+∞q \to +\infty. Based on numerical experiments, we conjecture that, if the billiard table is a generic axisymmetric analytic strictly convex curve, then these differences behave asymptotically like an exponentially small factor q−3e−rqq^{-3} e^{-r q} times either a constant or an oscillating function, and the exponent rr is half of the radius of convergence of the Borel transform of the well-known asymptotic series for the lengths of the (1,q)(1,q)-periodic trajectories. Our experiments are restricted to some perturbed ellipses and circles, which allows us to compare the numerical results with some analytical predictions obtained by Melnikov methods and also to detect some non-generic behaviors due to the presence of extra symmetries. Our computations require a multiple-precision arithmetic and have been programmed in PARI/GP.Comment: 21 pages, 37 figure

    Diffusion of muonium and hydrogen in diamond

    Full text link
    Jump rates of muonium and hydrogen in diamond are calculated by quantum transition-state theory, based on the path-integral centroid formalism. This technique allows us to study the influence of vibrational mode quantization on the effective free-energy barriers Delta F for impurity diffusion, which are renormalized respect to the zero-temperature classical calculation. For the transition from a tetrahedral (T) site to a bond-center (BC) position, Delta F is larger for hydrogen than for muonium, and the opposite happens for the transition from BC to T. The calculated effective barriers decrease for rising temperature, except for the muonium transition from T to BC sites. Calculated jump rates are in good agreement to available muon spin rotation data.Comment: 4 pages, 3 figure

    On the length and area spectrum of analytic convex domains

    Full text link
    Area-preserving twist maps have at least two different (p,q)(p,q)-periodic orbits and every (p,q)(p,q)-periodic orbit has its (p,q)(p,q)-periodic action for suitable couples (p,q)(p,q). We establish an exponentially small upper bound for the differences of (p,q)(p,q)-periodic actions when the map is analytic on a (m,n)(m,n)-resonant rotational invariant curve (resonant RIC) and p/qp/q is "sufficiently close" to m/nm/n. The exponent in this upper bound is closely related to the analyticity strip width of a suitable angular variable. The result is obtained in two steps. First, we prove a Neishtadt-like theorem, in which the nn-th power of the twist map is written as an integrable twist map plus an exponentially small remainder on the distance to the RIC. Second, we apply the MacKay-Meiss-Percival action principle. We apply our exponentially small upper bound to several billiard problems. The resonant RIC is a boundary of the phase space in almost all of them. For instance, we show that the lengths (respectively, areas) of all the (1,q)(1,q)-periodic billiard (respectively, dual billiard) trajectories inside (respectively, outside) analytic strictly convex domains are exponentially close in the period qq. This improves some classical results of Marvizi, Melrose, Colin de Verdi\`ere, Tabachnikov, and others about the smooth case

    Simulation of quantum zero-point effects in water using a frequency-dependent thermostat

    Full text link
    Molecules like water have vibrational modes with a zero-point energy well above room temperature. As a consequence, classical molecular dynamics simulations of their liquids largely underestimate the energy of modes with a higher zero-point temperature, which translates into an underestimation of covalent interatomic distances due to anharmonic effects. Zero-point effects can be recovered using path integral molecular dynamics simulations, but these are computationally expensive, making their combination with ab initio molecular dynamics simulations a challenge. As an alternative to path integral methods, from a computationally simple perspective, one would envision the design of a thermostat capable of equilibrating and maintaining the different vibrational modes at their corresponding zero-point temperatures. Recently, Ceriotti et al. (Phys. Rev. Lett. 102 020601 (2009)) introduced a framework to use a custom-tailored Langevin equation with correlated noise that can be used to include quantum fluctuations in classical molecular dynamics simulations. Here we show that it is possible to use the generalized Langevin equation with suppressed noise in combination with Nose-Hoover thermostats to efficiently impose a zero-point temperature on independent modes in liquid water. Using our simple and inexpensive method, we achieve excellent agreement for all atomic pair correlation functions compared to the path integral molecular dynamics simulation.Comment: 27 pages, 12 figs, Published versio

    On the length and area spectrum of analytic convex domains

    Get PDF
    Area-preserving twist maps have at least two different (p, q)-periodic orbits and every (p, q)-periodic orbit has its (p, q)-periodic action for suitable couples (p, q). We establish an exponentially small upper bound for the differences of (p, q)-periodic actions when the map is analytic on a (m, n)-resonant rotational invariant curve (resonant RIC) and p/q is 'sufficiently close' to m/n. The exponent in this upper bound is closely related to the analyticity strip width of a suitable angular variable. The result is obtained in two steps. First, we prove a Neishtadt-like theorem, in which the n-th power of the twist map is written as an integrable twist map plus an exponentially small remainder on the distance to the RIC. Second, we apply the MacKay-Meiss-Percival action principle. We apply our exponentially small upper bound to several billiard problems. The resonant RIC is a boundary of the phase space in almost all of them. For instance, we show that the lengths (respectively, areas) of all the (1, q)-periodic billiard (respectively, dual billiard) trajectories inside (respectively, outside) analytic strictly convex domains are exponentially close in the period q. This improves some classical results of Marvizi, Melrose, Colin de Verdiere, Tabachnikov, and others about the smooth case.Peer ReviewedPostprint (author's final draft

    Environmental Policies and Mergers’ Externalities

    Get PDF
    A Cournot oligopolistic setting model of trade is characterized by local and foreign firms competing in the presence of pollution quota and tax. Local firms are foreign-owned (FDI) and repatriate their profits. First, we analyze the impact on welfare given by the merger of the local firms, as a response to external firms’ competition and pollution abatement costs. Second, when merger is welfare decreasing, we study the best response of the government in order to compensate this negative externality. Finally, we compare the pollution quota and tax in order to determine their efficiency as a policy instrument.environmental policies, mergers, emission permits
    • …
    corecore