24 research outputs found

    Películas animadas de Síntesis de Fármacos 2

    Get PDF
    Memoria ID-0046. Ayudas de la Universidad de Salamanca para la innovación docente, curso 2015-2016

    NMR characterization of hairpin polyamide complexes with the minor groove of DNA

    Get PDF
    Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) amino acids can be combined in antiparallel side-by-side dimeric complexes for sequence-specific recognition in the minor groove of DNA. Covalently linking polyamide subunits has led to designed ligands with both increased affinity and specificity. Simple aliphatic amino acid linkers serve as internal guide residues for turn vs extended binding in a head-to-tail-linked polyamide motif. Polyamides of sequence composition ImPyPy-X-PyPyPy containing linkers of incremental length (X = 3-aminopropionic acid (β), 4-aminobutyric acid (γ), or 5-aminovaleric acid (δ)) in complex with an undecamer DNA duplex containing a 5'-(A,T)G(A,T)(3)-3' target site were structurally characterized using NMR spectroscopy. Previous quantitative DNase I footprinting studies identified gamma as the highest affinity of these "turn" linkers. NMR titrations and 2D NOESY data combined with restrained molecular modeling reveal that polyamides with β, γ, and δ linkers all may adopt a hairpin structure. Modeling supports the idea that the linkers in the βand δcomplexes adopt an energetically less favorable turn geometry than the γlinker and confirms that the three-carbon γ linker is sufficient and optimal for the hairpin conformation

    NMR characterization of hairpin polyamide complexes with the minor groove of DNA

    Get PDF
    Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) amino acids can be combined in antiparallel side-by-side dimeric complexes for sequence-specific recognition in the minor groove of DNA. Covalently linking polyamide subunits has led to designed ligands with both increased affinity and specificity. Simple aliphatic amino acid linkers serve as internal guide residues for turn vs extended binding in a head-to-tail-linked polyamide motif. Polyamides of sequence composition ImPyPy-X-PyPyPy containing linkers of incremental length (X = 3-aminopropionic acid (β), 4-aminobutyric acid (γ), or 5-aminovaleric acid (δ)) in complex with an undecamer DNA duplex containing a 5'-(A,T)G(A,T)(3)-3' target site were structurally characterized using NMR spectroscopy. Previous quantitative DNase I footprinting studies identified gamma as the highest affinity of these "turn" linkers. NMR titrations and 2D NOESY data combined with restrained molecular modeling reveal that polyamides with β, γ, and δ linkers all may adopt a hairpin structure. Modeling supports the idea that the linkers in the βand δcomplexes adopt an energetically less favorable turn geometry than the γlinker and confirms that the three-carbon γ linker is sufficient and optimal for the hairpin conformation

    NMR Characterization of the Aliphatic β/β Pairing for Recognition of A·T/T·A Base Pairs in the Minor Groove of DNA

    Get PDF
    Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) amino acids can be combined in antiparallel side-by-side dimeric complexes for sequence-specific recognition in the minor groove of DNA. Because the curvature of four or five contiguous Im−Py rings does not perfectly match the canonical B-helix, β-alanine (β) residues have been inserted to reset the register. Complexes of three pyrrole−imidazole polyamides of sequence composition ImPyPy-X-PyPyPy-Dp, where X = Py, β, or glycine (G), bound to a 13 base pair DNA duplex containing a 9 base pair 5‘-TGTATATCA-3‘ match site were characterized by NMR. NMR titrations and NOESY data combined with restrained molecular modeling show that each polyamide adopts an extended antiparallel dimeric conformation with the ligands fully overlapped around a central Py/Py, G/G, or β/β pair. Conformational exchange is seen near the linker for the G-linked complex, but not with the β or Py linkers. In addition to providing the first direct structural evidence for formation of the aliphatic β/β pairing in the minor groove, models support the idea that the β linker of ImPyPy-β-PyPyPy-Dp provides an optimal combination of size, flexibility, and alignment of the polyamide-paired aromatic subunits in extended, dimeric 2:1 complexes
    corecore