108 research outputs found

    Calderón de la Barca-Baccio del Bianco: un binomio escénico

    Get PDF
    En Calderón el espectáculo mitológico no es una comedia palaciega que se inscribe en el marco de la fiesta, ya sea onomástica, boda u otra efemérides, sino que es en sí misma una fiesta; puesto que, incluso en el ámbito de la fiesta, su escenificación posee, estructuralmente, los diversos elementos que configuran y caracterizan un regocijo lúdico o celebrativo. La simultaneidad con que la visión trata de compensar, equilibradamente, la trayectoria o proceso de tensión, halla, en la cooperación de todas las artes figurativas los instrumentos posibilitadores del lenguaje icónico con que se corporiza la fábula en su entorno mítico y móvil parabólico por mor de la escenotecnia; y, más concretamente, por la cualidad diletante manierista de la perspectiva o la escenografía perspéctica. Este proceso se acentuará cuando el escenotécnico florentino Baccio del Bianco venga a España y trabaje simbióticamente con Calderón, enfatizando las diferentes artes, apoyado en el eclecticismo de esta técnica teatral

    On the intrinsic and the spatial numerical range

    Full text link
    For a bounded function ff from the unit sphere of a closed subspace XX of a Banach space YY, we study when the closed convex hull of its spatial numerical range W(f)W(f) is equal to its intrinsic numerical range V(f)V(f). We show that for every infinite-dimensional Banach space XX there is a superspace YY and a bounded linear operator T:XYT:X\longrightarrow Y such that coˉW(T)V(T)\bar{co} W(T)\neq V(T). We also show that, up to renormig, for every non-reflexive Banach space YY, one can find a closed subspace XX and a bounded linear operator TL(X,Y)T\in L(X,Y) such that coˉW(T)V(T)\bar{co} W(T)\neq V(T). Finally, we introduce a sufficient condition for the closed convex hull of the spatial numerical range to be equal to the intrinsic numerical range, which we call the Bishop-Phelps-Bollobas property, and which is weaker than the uniform smoothness and the finite-dimensionality. We characterize strong subdifferentiability and uniform smoothness in terms of this property.Comment: 12 page

    Influence of hydrated lime on the chloride-induced reinforcement corrosion in eco-efficient concretes made with high-volume fly ash

    Full text link
    [EN] The main objective of this study was to analyze the influence that the addition of finely ground hydrated lime has on chloride-induced reinforcement corrosion in eco-efficient concrete made with 50% cement replacement by fly ash. Six tests were carried out: mercury intrusion porosimetry, chloride migration, accelerated chloride penetration, electrical resistivity, and corrosion rate. The results show that the addition of 10¿20% of lime to fly ash concrete did not affect its resistance to chloride penetration. However, the cementitious matrix density is increased by the pozzolanic reaction between the fly ash and added lime. As a result, the porosity and the electrical resistivity improved (of the order of 10% and 40%, respectively), giving rise to a lower corrosion rate (iCORR) of the rebars and, therefore, an increase in durability. In fact, after subjecting specimens to wetting¿drying cycles in a 0.5 M sodium chloride solution for 630 days, corrosion is considered negligible in fly ash concrete with 10% or 20% lime (iCORR less than 0.2 µA/cm2), while in fly ash concrete without lime, corrosion was low (iCORR of the order of 0.3 µA/cm2) and in the reference concrete made with Portland cement, only the corrosion was high (iCORR between 2 and 3 µA/cm2).This research was funded by MINISTERIO DE ECONOMIA Y COMPETITIVIDAD, grant number MAT2012-38429-C04-04.Valcuende Payá, MO.; Calabuig Pastor, R.; Martínez-Ibernón, A.; Soto Camino, J. (2020). Influence of hydrated lime on the chloride-induced reinforcement corrosion in eco-efficient concretes made with high-volume fly ash. Materials. 13(22):1-16. https://doi.org/10.3390/ma13225135S1161322Isaia, G. C., & Gastaldini, A. L. G. (2009). Concrete sustainability with very high amount of fly ash and slag. Revista IBRACON de Estruturas e Materiais, 2(3), 244-253. doi:10.1590/s1983-41952009000300003Golewski, G. L. (2018). Green concrete composite incorporating fly ash with high strength and fracture toughness. Journal of Cleaner Production, 172, 218-226. doi:10.1016/j.jclepro.2017.10.065Hanehara, S., Tomosawa, F., Kobayakawa, M., & Hwang, K. (2001). Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste. Cement and Concrete Research, 31(1), 31-39. doi:10.1016/s0008-8846(00)00441-5Deschner, F., Winnefeld, F., Lothenbach, B., Seufert, S., Schwesig, P., Dittrich, S., … Neubauer, J. (2012). Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, 42(10), 1389-1400. doi:10.1016/j.cemconres.2012.06.009Isaia, G. ., Gastaldini, A. L. ., & Moraes, R. (2003). Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cement and Concrete Composites, 25(1), 69-76. doi:10.1016/s0958-9465(01)00057-9Simčič, T., Pejovnik, S., De Schutter, G., & Bosiljkov, V. B. (2015). Chloride ion penetration into fly ash modified concrete during wetting–drying cycles. Construction and Building Materials, 93, 1216-1223. doi:10.1016/j.conbuildmat.2015.04.033Thomas, M. D. A., Hooton, R. D., Scott, A., & Zibara, H. (2012). The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cement and Concrete Research, 42(1), 1-7. doi:10.1016/j.cemconres.2011.01.001Delagrave, A., Marchand, J., Ollivier, J.-P., Julien, S., & Hazrati, K. (1997). Chloride binding capacity of various hydrated cement paste systems. Advanced Cement Based Materials, 6(1), 28-35. doi:10.1016/s1065-7355(97)90003-1Chalee, W., Ausapanit, P., & Jaturapitakkul, C. (2010). Utilization of fly ash concrete in marine environment for long term design life analysis. Materials & Design, 31(3), 1242-1249. doi:10.1016/j.matdes.2009.09.024Lollini, F., Redaelli, E., & Bertolini, L. (2015). Investigation on the effect of supplementary cementitious materials on the critical chloride threshold of steel in concrete. Materials and Structures, 49(10), 4147-4165. doi:10.1617/s11527-015-0778-0Baroghel-Bouny, V., Kinomura, K., Thiery, M., & Moscardelli, S. (2011). Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials. Cement and Concrete Composites, 33(8), 832-847. doi:10.1016/j.cemconcomp.2011.04.007Wongkeo, W., Thongsanitgarn, P., & Chaipanich, A. (2012). Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Materials & Design (1980-2015), 36, 655-662. doi:10.1016/j.matdes.2011.11.043Poon, C. S., Lam, L., & Wong, Y. L. (2000). A study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research, 30(3), 447-455. doi:10.1016/s0008-8846(99)00271-9Garcés, P., Andión, L. G., Zornoza, E., Bonilla, M., & Payá, J. (2010). The effect of processed fly ashes on the durability and the corrosion of steel rebars embedded in cement–modified fly ash mortars. Cement and Concrete Composites, 32(3), 204-210. doi:10.1016/j.cemconcomp.2009.11.006Ghafoori, N., Najimi, M., Diawara, H., & Islam, M. S. (2015). Effects of class F fly ash on sulfate resistance of Type V Portland cement concretes under continuous and interrupted sulfate exposures. Construction and Building Materials, 78, 85-91. doi:10.1016/j.conbuildmat.2015.01.004Han, C., Shen, W., Ji, X., Wang, Z., Ding, Q., Xu, G., … Tang, X. (2018). Behavior of high performance concrete pastes with different mineral admixtures in simulated seawater environment. Construction and Building Materials, 187, 426-438. doi:10.1016/j.conbuildmat.2018.07.196Zuquan, J., Xia, Z., Tiejun, Z., & Jianqing, L. (2018). Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones. Construction and Building Materials, 177, 170-183. doi:10.1016/j.conbuildmat.2018.05.120Cheewaket, T., Jaturapitakkul, C., & Chalee, W. (2010). Long term performance of chloride binding capacity in fly ash concrete in a marine environment. Construction and Building Materials, 24(8), 1352-1357. doi:10.1016/j.conbuildmat.2009.12.039Fanghui, H., Qiang, W., & Jingjing, F. (2015). The differences among the roles of ground fly ash in the paste, mortar and concrete. Construction and Building Materials, 93, 172-179. doi:10.1016/j.conbuildmat.2015.05.117Alaka, H. A., & Oyedele, L. O. (2016). High volume fly ash concrete: The practical impact of using superabundant dose of high range water reducer. Journal of Building Engineering, 8, 81-90. doi:10.1016/j.jobe.2016.09.008Huang, Q., Zhu, X., Liu, D., Zhao, L., & Zhao, M. (2021). Modification of water absorption and pore structure of high-volume fly ash cement pastes by incorporating nanosilica. Journal of Building Engineering, 33, 101638. doi:10.1016/j.jobe.2020.101638Anjos, M. A. S., Camões, A., Campos, P., Azeredo, G. A., & Ferreira, R. L. S. (2020). Effect of high volume fly ash and metakaolin with and without hydrated lime on the properties of self-compacting concrete. Journal of Building Engineering, 27, 100985. doi:10.1016/j.jobe.2019.100985Herath, C., Gunasekara, C., Law, D. W., & Setunge, S. (2020). Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Construction and Building Materials, 258, 120606. doi:10.1016/j.conbuildmat.2020.120606Lorca, P., Calabuig, R., Benlloch, J., Soriano, L., & Payá, J. (2014). Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Materials & Design, 64, 535-541. doi:10.1016/j.matdes.2014.08.022Panesar, D. K., & Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials, 251, 118866. doi:10.1016/j.conbuildmat.2020.118866Baert, G., Poppe, A.-M., & De Belie, N. (2008). Strength and durability of high-volume fly ash concrete. Structural Concrete, 9(2), 101-108. doi:10.1680/stco.2008.9.2.101Lammertijn, S., & De Belie, N. (2008). Porosity, gas permeability, carbonation and their interaction in high-volume fly ash concrete. Magazine of Concrete Research, 60(7), 535-545. doi:10.1680/macr.2008.60.7.535Bouzoubaâ, N., Bilodeau, A., Tamtsia, B., & Foo, S. (2010). Carbonation of fly ash concrete: laboratory and field data. Canadian Journal of Civil Engineering, 37(12), 1535-1549. doi:10.1139/l10-081Zhang, Y. M., Sun, W., & Yan, H. D. (2000). Hydration of high-volume fly ash cement pastes. Cement and Concrete Composites, 22(6), 445-452. doi:10.1016/s0958-9465(00)00044-5Zhao, Q., He, X., Zhang, J., & Jiang, J. (2016). Long-age wet curing effect on performance of carbonation resistance of fly ash concrete. Construction and Building Materials, 127, 577-587. doi:10.1016/j.conbuildmat.2016.10.065Barbhuiya, S. A., Gbagbo, J. K., Russell, M. I., & Basheer, P. A. M. (2009). Properties of fly ash concrete modified with hydrated lime and silica fume. Construction and Building Materials, 23(10), 3233-3239. doi:10.1016/j.conbuildmat.2009.06.001Filho, J. H., Medeiros, M. H. F., Pereira, E., Helene, P., & Isaia, G. C. (2013). High-Volume Fly Ash Concrete with and without Hydrated Lime: Chloride Diffusion Coefficient from Accelerated Test. Journal of Materials in Civil Engineering, 25(3), 411-418. doi:10.1061/(asce)mt.1943-5533.0000596Kumar, M., Singh, S. K., & Singh, N. P. (2012). Heat evolution during the hydration of Portland cement in the presence of fly ash, calcium hydroxide and super plasticizer. Thermochimica Acta, 548, 27-32. doi:10.1016/j.tca.2012.08.028Gunasekara, C., Sandanayake, M., Zhou, Z., Law, D. W., & Setunge, S. (2020). Effect of nano-silica addition into high volume fly ash–hydrated lime blended concrete. Construction and Building Materials, 253, 119205. doi:10.1016/j.conbuildmat.2020.119205Mohammed, M. E., Al-Shathr, B. S., & al-Attar, T. S. (2020). Effect of incorporating hydrated lime on strength gain of high-volume fly ash lightweight concrete. IOP Conference Series: Materials Science and Engineering, 737, 012058. doi:10.1088/1757-899x/737/1/012058Bentz, D. P. (2014). Activation energies of high-volume fly ash ternary blends: Hydration and setting. Cement and Concrete Composites, 53, 214-223. doi:10.1016/j.cemconcomp.2014.06.018Gandía-Romero, J. M., Ramón, J. E., Bataller, R., Palací, D. G., Valcuende, M., & Soto, J. (2016). Influence of the area and distance between electrodes on resistivity measurements of concrete. Materials and Structures, 50(1). doi:10.1617/s11527-016-0925-2Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review. Cement and Concrete Composites, 25(4-5), 459-471. doi:10.1016/s0958-9465(02)00086-0Matos, P. R. de, Sakata, R. D., & Prudêncio, L. R. (2019). Eco-efficient low binder high-performance self-compacting concretes. Construction and Building Materials, 225, 941-955. doi:10.1016/j.conbuildmat.2019.07.254Hornbostel, K., Larsen, C. K., & Geiker, M. R. (2013). Relationship between concrete resistivity and corrosion rate – A literature review. Cement and Concrete Composites, 39, 60-72. doi:10.1016/j.cemconcomp.2013.03.019Shi, C. (2004). Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results. Cement and Concrete Research, 34(3), 537-545. doi:10.1016/j.cemconres.2003.09.007Li, S., & Roy, D. M. (1986). Investigation of relations between porosity, pore structure, and C1− diffusion of fly ash and blended cement pastes. Cement and Concrete Research, 16(5), 749-759. doi:10.1016/0008-8846(86)90049-9Ngala, V., Page, C., Parrott, L., & Yu, S. (1995). Diffusion in cementitious materials: II, further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30%PFA pastes. Cement and Concrete Research, 25(4), 819-826. doi:10.1016/0008-8846(95)00072-kZhang, T., & Gjørv, O. E. (1996). Diffusion behavior of chloride ions in concrete. Cement and Concrete Research, 26(6), 907-917. doi:10.1016/0008-8846(96)00069-5Amiri, O., Aı̈t-Mokhtar, A., Dumargue, P., & Touchard, G. (2001). Electrochemical modelling of chloride migration in cement based materials. Electrochimica Acta, 46(9), 1267-1275. doi:10.1016/s0013-4686(00)00717-9Shehata, M. H., Thomas, M. D. A., & Bleszynski, R. F. (1999). The effects of fly ash composition on the chemistry of pore solution in hydrated cement pastes. Cement and Concrete Research, 29(12), 1915-1920. doi:10.1016/s0008-8846(99)00190-8Alonso, M. C., & Sanchez, M. (2009). Analysis of the variability of chloride threshold values in the literature. Materials and Corrosion, 60(8), 631-637. doi:10.1002/maco.20090529

    Exploring reuse of industrial wastewater from exhaust dyebaths by solar-based photo-Fenton treatment

    Full text link
    The aim of the research under discussion in the present paper is to study the decolorization and mineralization of textile industrial wastewaters from exhaust dyebaths by means of a solar photo-Fenton treatment. The exhaust dyebaths were grouped according to the fibers and dyeing recipes used, so as to verify the effectiveness of the photo-Fenton treatment on each dyeing process separately. Next, the results previously achieved were compared to those obtained by mixing all the exhaust baths together, as is common practice when treating the industrial textile effluents from dyeing and finishing procedures. After their neutralization and filtration, photo-Fenton-treated exhaust dyebaths and mixtures were reused to prepare laboratory dyeing samples. These techniques on the reuse of wastewaters were tested on several fibers by using the same dyeing procedure that was originally applied, as well as in different dyeing processes and for most fiber types. The results achieved showed that the reutilization of the aforementioned effluents, either in new exhaust dyebaths or in some other textile industrial operations, was of some considerable importance. Water consumption would be significantly reduced as well as the wastewater levies for the firms. Furthermore, the contaminating effect of the industrial effluents to be dealt with would be also diminished, reaping environmental and economic benefits.Sanz Carbonell, JF.; Monllor Pérez, P.; Vicente Candela, R.; Amat Payá, AM.; Arques Sanz, A.; Bonet Aracil, MA. (2013). Exploring reuse of industrial wastewater from exhaust dyebaths by solar-based photo-Fenton treatment. Textile Research Journal. 83(13):1325-1332. doi:10.1177/0040517512467061S13251332831

    Experimental resuts and simulation with TRNSYS of a 7.2 kWp grid-connected photovoltaic system

    Full text link
    This paper presents a dynamic model and experimental results of a 7.2. kWp photovoltaic (PV) installation located at the Polytechnic University of Valencia (Spain). The modelling of the monocrystalline cells has been realised in TRNSYS and has been validated during an extensive experimental campaign from January 2001 to March 2003, using the data of a fully monitored PV field. The simulation results with TRNSYS provide an accurate prediction of the long-term performance. In addition to the dynamic models, algebraic methods such as the constant fill factor have also been applied.In the design of PV systems, there are several important uncertainties which have to be taken into account, such as the reduction of power with respect to the nominal power under Standard Test Conditions (STC), the choice of the meteorological database, and the models for the calculation of the radiation on tilted surface and of the cell temperature. These aspects are analyzed thoroughly in this paper, as well as the problems inherent to the PV power injection into the grid.Quesada, BR.; Sánchez, C.; Cañada, J.; Royo Pastor, R.; J. Payá (2011). Experimental resuts and simulation with TRNSYS of a 7.2 kWp grid-connected photovoltaic system. Applied Energy. 88:1772-1783. doi:10.1016/j.apenergy.2010.12.011S177217838

    Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study

    Get PDF
    [EN] In this work, analysis of excitation-emission-matrices (EEM) has been employed to gain further insight into the characterization of humic like substances (HLS) obtained from urban wastes (soluble bio-organic substances, SBOs). In particular, complexation of these substances with iron and changes along a photo-Fenton process have been studied. Recorded EEMs were decomposed by using parallel factor analysis (PARAFAC). Three fluorescent components were identified by PARAFAC modeling of the entire set of SBO solutions studied. The EEM peak locations (lambda(ex)/lambda(em)) of these components were 310-330 nm/400-420 nm (C1), 340-360 nm/450-500 nm (C2), and 285 nm/335-380 nm (C3). Slight variations of the maximum position of each component with the solution pH were observed. The interaction of SBO with Fe(III) was characterized by determining the stability constants of the components with Fe(III) at different pH values, which were in the order of magnitude of the ones reported for humic substances and reached their highest values at pH = 5. Photochemical experiments employing SBO and Fe(III), with and without H2O2, showed pH-dependent trends for the evolution of the modeled components, which exhibited a strong correlation with the efficiency reported for the photo-Fenton processes in the presence of SBO at different pH values.This work was supported by Generalitat Valenciana, Conselleria d'Ecuacio, Cultura i esport, Spain (GV/2015/074), Spanish Ministerio de Economia y Competitividad (CTQ2015-69832-C4-4-R) and by the Marie Sklodowska-Curie Research and Innovation Staff Exchange project funded by the European Commission H2020-MSCA-RISE-2014 (Project number: 645551). F. S. G. E. and L. C. are researchers from CONICET, Argentina.García-Ballesteros, S.; Constante, M.; Vicente Candela, R.; Mora Carbonell, M.; Amat Payá, AM.; Arques Sanz, A.; Carlos, L.... (2017). Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study. Photochemical & Photobiological Sciences. 16:38-45. https://doi.org/10.1039/c6pp00236fS384516Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. doi:10.1016/j.cattod.2009.06.018WANG, J. L., & XU, L. J. (2012). Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Critical Reviews in Environmental Science and Technology, 42(3), 251-325. doi:10.1080/10643389.2010.507698Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564Papoutsakis, S., Miralles-Cuevas, S., Oller, I., Garcia Sanchez, J. L., Pulgarin, C., & Malato, S. (2015). Microcontaminant degradation in municipal wastewater treatment plant secondary effluent by EDDS assisted photo-Fenton at near-neutral pH: An experimental design approach. Catalysis Today, 252, 61-69. doi:10.1016/j.cattod.2015.02.005Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47(2), 833-840. doi:10.1016/j.watres.2012.11.008De Luca, A., Dantas, R. F., & Esplugas, S. (2015). Study of Fe(III)-NTA chelates stability for applicability in photo-Fenton at neutral pH. Applied Catalysis B: Environmental, 179, 372-379. doi:10.1016/j.apcatb.2015.05.025Bernabeu, A., Palacios, S., Vicente, R., Vercher, R. F., Malato, S., Arques, A., & Amat, A. M. (2012). Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants. Chemical Engineering Journal, 198-199, 65-72. doi:10.1016/j.cej.2012.05.056Klamerth, N., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. (2011). Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catalysis Today, 161(1), 241-246. doi:10.1016/j.cattod.2010.10.074Voelker, B. M., Morel, F. M. M., & Sulzberger, B. (1997). Iron Redox Cycling in Surface Waters:  Effects of Humic Substances and Light. Environmental Science & Technology, 31(4), 1004-1011. doi:10.1021/es9604018De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947-1957. doi:10.1016/j.watres.2012.01.014Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., … Carlos, L. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176-180. doi:10.1016/j.cattod.2012.08.036Gomis, J., Carlos, L., Prevot, A. B., Teixeira, A. C. S. C., Mora, M., Amat, A. M., … Arques, A. (2015). Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: Optimization of operational variables. Catalysis Today, 240, 39-45. doi:10.1016/j.cattod.2014.03.034Gomis, J., Bianco Prevot, A., Montoneri, E., González, M. C., Amat, A. M., Mártire, D. O., … Carlos, L. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236-243. doi:10.1016/j.cej.2013.09.009Avetta, P., Berto, S., Bianco Prevot, A., Minella, M., Montoneri, E., Persico, D., … Arques, A. (2015). Photoinduced transformation of waste-derived soluble bio-based substances. Chemical Engineering Journal, 274, 247-255. doi:10.1016/j.cej.2015.03.126Gomis, J., Gonçalves, M. G., Vercher, R. F., Sabater, C., Castillo, M.-A., Prevot, A. B., … Arques, A. (2015). Determination of photostability, biocompatibility and efficiency as photo-Fenton auxiliaries of three different types of soluble bio-based substances (SBO). Catalysis Today, 252, 177-183. doi:10.1016/j.cattod.2014.10.015Berkovic, A. M., García Einschlag, F. S., Gonzalez, M. C., Pis Diez, R., & Mártire, D. O. (2013). Evaluation of the Hg2+binding potential of fulvic acids from fluorescence excitation–emission matrices. Photochem. Photobiol. Sci., 12(2), 384-392. doi:10.1039/c2pp25280eStedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11), 572-579. doi:10.4319/lom.2008.6.572Ishii, S. K. L., & Boyer, T. H. (2012). Behavior of Reoccurring PARAFAC Components in Fluorescent Dissolved Organic Matter in Natural and Engineered Systems: A Critical Review. Environmental Science & Technology, 46(4), 2006-2017. doi:10.1021/es2043504Su, Y., Chen, F., & Liu, Z. (2015). Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line: insights into sources of CDOM. Photochemical & Photobiological Sciences, 14(5), 1047-1062. doi:10.1039/c4pp00478gYang, X., Meng, F., Huang, G., Sun, L., & Lin, Z. (2014). Sunlight-induced changes in chromophores and fluorophores of wastewater-derived organic matter in receiving waters – The role of salinity. Water Research, 62, 281-292. doi:10.1016/j.watres.2014.05.050Wu, J., Zhang, H., He, P.-J., & Shao, L.-M. (2011). Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis. Water Research, 45(4), 1711-1719. doi:10.1016/j.watres.2010.11.022Yamashita, Y., & Jaffé, R. (2008). Characterizing the Interactions between Trace Metals and Dissolved Organic Matter Using Excitation−Emission Matrix and Parallel Factor Analysis. Environmental Science & Technology, 42(19), 7374-7379. doi:10.1021/es801357hNisticò, R., Barrasso, M., Carrillo Le Roux, G. A., Seckler, M. M., Sousa, W., Malandrino, M., & Magnacca, G. (2015). Biopolymers from Composted Biowaste as Stabilizers for the Synthesis of Spherical and Homogeneously Sized Silver Nanoparticles for Textile Applications on Natural Fibers. ChemPhysChem, 16(18), 3902-3909. doi:10.1002/cphc.201500721Ohno, T. (2002). Fluorescence Inner-Filtering Correction for Determining the Humification Index of Dissolved Organic Matter. Environmental Science & Technology, 36(4), 742-746. doi:10.1021/es0155276Bahram, M., Bro, R., Stedmon, C., & Afkhami, A. (2006). Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics, 20(3-4), 99-105. doi:10.1002/cem.978Ryan, D. K., & Weber, J. H. (1982). Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid. Analytical Chemistry, 54(6), 986-990. doi:10.1021/ac00243a033Yan, M., Fu, Q., Li, D., Gao, G., & Wang, D. (2013). Study of the pH influence on the optical properties of dissolved organic matter using fluorescence excitation–emission matrix and parallel factor analysis. Journal of Luminescence, 142, 103-109. doi:10.1016/j.jlumin.2013.02.052Dryer, D. J., Korshin, G. V., & Fabbricino, M. (2008). In Situ Examination of the Protonation Behavior of Fulvic Acids Using Differential Absorbance Spectroscopy. Environmental Science & Technology, 42(17), 6644-6649. doi:10.1021/es800741uGhosh, K., & Schnitzer, M. (1981). Fluorescence Excitation Spectra and Viscosity Behavior of a Fulvic Acid and its Copper and Iron Complexes1. Soil Science Society of America Journal, 45(1), 25. doi:10.2136/sssaj1981.03615995004500010005xLyon, B. A., Cory, R. M., & Weinberg, H. S. (2014). Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination/chloramination. Journal of Hazardous Materials, 264, 411-419. doi:10.1016/j.jhazmat.2013.10.065Poulin, B. A., Ryan, J. N., & Aiken, G. R. (2014). Effects of Iron on Optical Properties of Dissolved Organic Matter. Environmental Science & Technology, 48(17), 10098-10106. doi:10.1021/es502670rXu, H., Yan, Z., Cai, H., Yu, G., Yang, L., & Jiang, H. (2013). Heterogeneity in metal binding by individual fluorescent components in a eutrophic algae-rich lake. Ecotoxicology and Environmental Safety, 98, 266-272. doi:10.1016/j.ecoenv.2013.09.008Esteves da Silva, J. (1998). Fluorescence quenching of anthropogenic fulvic acids by Cu(II), Fe(III) and UO22+. Talanta, 45(6), 1155-1165. doi:10.1016/s0039-9140(97)00224-5Zhao, J., & Nelson, D. J. (2005). Fluorescence study of the interaction of Suwannee River fulvic acid with metal ions and Al3+-metal ion competition. Journal of Inorganic Biochemistry, 99(2), 383-396. doi:10.1016/j.jinorgbio.2004.10.005Mikutta, C., & Kretzschmar, R. (2011). Spectroscopic Evidence for Ternary Complex Formation between Arsenate and Ferric Iron Complexes of Humic Substances. Environmental Science & Technology, 45(22), 9550-9557. doi:10.1021/es202300wOrsetti, S., Laskov, C., & Haderlein, S. B. (2013). Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation. Environmental Science & Technology, 47(24), 14161-14168. doi:10.1021/es403658gLopes, L., de Laat, J., & Legube, B. (2002). Charge Transfer of Iron(III) Monomeric and Oligomeric Aqua Hydroxo Complexes:  Semiempirical Investigation into Photoactivity. Inorganic Chemistry, 41(9), 2505-2517. doi:10.1021/ic011029

    Thermographic study of the preheating plugs in diesel engines

    Full text link
    The use of direct injection diesel engines has been widely applied during the past ten years. In such engines, the preheating plugs are a key element which has a significant contribution in the pollutant emissions. In this paper, two different plug designs from Renault are analyzed. The new plug reduces substantially the required electrical consumption. Nevertheless, the pollutant emissions are higher (fundamentally CO and HCs) and hereby a thorough analysis is required to understand the possible reasons. Firstly, an infrared thermography analysis of the plugs has been carried out. The new plug tip presents 100e200 C higher temperatures than with the former design. Secondly, a thermal model has been developed and validated with temperature measurements. The latter model has helped to obtain the energy flow diagram. Finally, a thermography analysis of the head of the cylinders has been carried out. The results show that the higher exhaust emissions are related with an incomplete combustion process due to a thin air gap which surrounds the tip of the plug.The authors gratefully acknowledge RENAULT SPAIN and RENAULT FRANCE for the funding of research projects during the past 20 years.Royo Pastor, R.; Albertos Arranz, M.; Cárcel Cubas, JA.; Payá Herrero, J. (2012). Thermographic study of the preheating plugs in diesel engines. Applied Thermal Engineering. 37:412-419. doi:10.1016/j.applthermaleng.2011.11.059S4124193

    Evolución de la resistencia del hormigón con la edad y la temperatura

    Full text link
    Se expone cuál es la influencia de la edad y la temperatura sobre el desarrollo de resistencia del hormigón y cómo calcular su valor a lo largo del tiempo y saber cómo evoluciona.Valcuende Payá, MO.; Marco Serrano, E.; Jardón Giner, R.; Gil Andrés, A. (2011). Evolución de la resistencia del hormigón con la edad y la temperatura. http://hdl.handle.net/10251/1279

    Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11356-016-7889-1In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.This work was realized with the financial support of a Marie Sklodowska-Curie Research and Innovation Staff Exchange project funded by the European Commission H2020-MSCA-RISE-2014 within the framework of the research project Mat4treaT (project number 645551). Financial support from Spanish Government (CTQ2015-69832-C4-4-R) is gratefully acknowledged. The authors acknowledge the financial support of the Generalitat Valenciana, Conselleria d’Educació, Cultura i Esport (GV/AICO/2015/124) and CTQ2015-69832-C4-4-R.García-Negueroles, P.; Bou-Belda, E.; Santos-Juanes Jordá, L.; Amat Payá, AM.; Arques Sanz, A.; Vercher Pérez, RF.; Monllor Pérez, P.... (2017). Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances. Environmental Science and Pollution Research. 24(14):12664-12672. https://doi.org/10.1007/s11356-016-7889-1S12664126722414Ali N, Hameed A et al (2009) Physicochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. J Hazard Mater 164(1):322–328Amat AM, Arques A, Miranda MA, Seguí S (2004) Photo-Fenton reaction for the abatement of commercial surfactants in a solar pilot plant. Sol Energy 77:559–566Amorim CC, Leão MMD, Moreira RFPM, Fabris JD, Henriques AB (2013) Performance of blast furnace waste for azo dye degradation through photo-Fenton-like processes. Chem Eng J 224:59–66Anjaneyulu Y, Sreedhara Chary N et al (2005) Decolorization of industrial effluents: available methods and emerging technologies. Environmental Science and Biotechnology 4(4):245–273Arslan-Alaton I, Tureli G, Olmez-Hanci T (2009) Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. J Photochem Photobiol A Chem 202:142–153Azbar N, Yonar T, Kestioglu K (2004) Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55:35–43Baba Y, Yatagai T, Harada T, Kawase Y (2015) Hydroxyl radical generation in the photo-Fenton process: effects of carboxylic acids on iron redox cycling. Chemical Engineering Journal, Volume 277(1):229–241Bakshi DK, Sharma P (2003) Genotoxicity of textile dyes evaluated with Ames test and rec-assay. J Environ Pathol Toxicol Oncol 22:10Blanco J, Torrades F, Morón M, Brouta-Agnesá M, García-Montaño J (2014) Photo-Fenton and sequencing batch reactor coupled to photo-Fenton processes for textile wastewater reclamation: feasibility of reuse in dyeing processes. Chem Eng J 240:469–475Chen Q, Yang Y, Zhou M, Liu M, Yu S, Gao C (2015) Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration. Original research article. J Hazard Mater 284(2):121–129dos Santos AB, Cervantes FJ, van Lier J (2007) Review paper on current technologies for decolorisation of textile wastewater: perspectives for anaerobic biotechnology. Bioresour Technol 37:315–377Durán A, Monteagudo JM, Amores E (2008) Solar photo-Fenton degradation of reactive blue 4 in a CPC reactor. Appl Catal B Environ 80(1–2):42–50Ergas S, Therriault B, Reckhow D (2006) Evaluation of water reuse technologies for the textile industry. J Environ Eng 132:315–323García Ballesteros S, Costante R, Vicente R, Mora M, Amat AM, Arques A, Carlos L, García Einschlag FS (2016) Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study. Ptotochem Photobiol Sci in press. doi: 10.1039/c6pp00236fGhaly AE, Ananthashankar R, Alhattab M, Ramakrishnan VV (2014) Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol 05:1–18Ghoreishian SM, Maleknia L, Mirzapour H, Norouzi M (2013) Antibacterial properties and color fastness of silk fabric dyed with turmeric extract. Fiber Polym 14(2):201–207. doi: 10.1007/s12221-013-0201-9Gomis J, Vercher RF, Amat AM, Mártire DO, González MC, Bianco Prevot A, Montoneri E, Arques A, Carlos L (2013) Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: sensitizing effect and photo-Fenton-like process. Catal Today 209:176–180Gomis J, Carlos L, Bianco Prevot A, Teixeira ACSC, Mora M, Amat AM, Vicente R, Arques A (2015) Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: optimization of operational variables. Catal Today 240:39–45Gupta D, Khare SK, Laha A (2004) Antimicrobial properties of natural dyes against gram negative bacteria. Color Technol 120(4):167–171. doi: 10.1111/j.1478-4408.2004.tb00224.xHan S, Yang Y (2005) Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments 64(2):157–161. doi: 10.1016/j.dyepig.2004.05.008Huang W, Brigante M, Wu F, Mousty C, Hanna K, Mailhot G (2013) Assessment of the Fe (III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A. Environ Sci Technol 47(4):1952–1959Ince NH, Tezcanh G (1999) Treatability of textile dye-bath effluents by advanced oxidation: preparation for reuse. Water Sci Technol 40(1):183–190ISO 6332:1988. Water quality: determination of iron, spectrometric method using 1,10-phenanthrolineISO 105-X12:2001. Textiles—test for color fastness—part X12: color fastness to rubbing.ISO 105-J01:2009. Textiles. Ensayos de solidez del color. Parte J01: Principios generales para la medición del color de superficies.ISO 105-J03:2009. Textiles. Tests for colour fastness. Part J03: calculation of colour differencesISO 105-C06:2010. Textiles—tests for color fastness—part C06: color fastness to domestic and commercial laundering.ISO 7887:2011. Water quality: examination and determination of colour. Method B.Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents: current scenario and future prospects. Review Article Biotechnology Advances 33(8):1697–1714Maezono T, Tokumura M, Sekine M, Kawase Y (2011) Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye orange II. Chemosphere 82(10):1422–1430Malato S, Blanco J, Cáceres J, Fernández-Alba AR, Agüera A, Rodríguez A (2002) Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catalysis Today 76 2002(2–4):209–220Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59Malpass GRP, Miwa DW, Mortari DA, Machado SAS, Motheo AJ (2007) Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration. Water Res 41:2969–2977Manenti D, Soares P, Silva TCV, Módenes A, Espinoza-Quiñones F, Bergamasco R, Boaventura RR, Vilar VP (2015) Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater. Environ Sci Pollut Res 22:833–845Mondal M, De S (2016) Treatment of textile plant effluent by hollow fiber nanofiltration membrane and multi-component steady state modeling. Chem Eng J 285:304–318Montoneri, E., Boffa, V., Quagliotto, P., Mendichi, R., Chierotti, M. R., Gobetto, R., and Medana, C. (2008a) "Humic acid-like matter isolated from green urban wastes. Part 1: Structure and surfactant properties". Bio Res 3(1), 123–141.Montoneri, E., Savarino, P., Bottigliengo, S., Musso, G., Boffa, V., Prevot, A. B., Fabri, D. and Pramauro, E. (2008b) "Humic acid-like matter isolated from green urban wastes Part II: Performance in chemical and environmental technologies". Bio Res 3(1), 217–233.Montoneri E, Boffa V, Savarino P, Tambone F, Adani F, Micheletti L, Gianotti C, Chiono R (2009) Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation. Waste Manag 29:383–389Neamtu M, Yediler A, Siminiceanu I, Kettrup A (2003) Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. J Photochem Photobiol A 161:87–93Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166Pignatello J, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Environ Sci Technol 36:1–84Prato-Garcia D, Buitrón G (2011) Degradation of azo dye mixtures through sequential hybrid systems: evaluation of three advanced oxidation processes for the pre-treatment stage. J Photochem Photobiol A Chem 223:103–110Rodriguez M, Sarria V, Esplugas S, Pulgarin CP-F (2002) Treatment of a biorecalcitrant wastewater generated in textile activities: biodegradability of the photo-treated solution. J Photochem Photobiol A Chem 151:129–135Rosa JM, Fileti AMF, Tambourgi EB, Santana JCC (2015) Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by ultraviolet/hydrogen peroxide homogeneous photocatalysis. J Clean Prod 90:60–65Sarayu K, Sandhya S (2012) Current technologies for biological treatment of textile wastewater—a review. Appl Biochem Biotech 147(3):645–661Sarkar AK (2004) An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants. BMC Dermatol 4(1):15. doi: 10.1186/1471-5945-4-15Sharma KP, Sharma S et al (2007) A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests. Chemosphere 69(1):48–54Standard methods for the examination of water and wastewater (2012) Part 2000: Physical & Aggregate properties, 22end edn. APHA, AWWA and WEFSutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015Wang C, Yediler A, Lienert D, Wang Z, Kettrup A (2002) Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri. Chemosphere 46(2):339–344Yoo J, Ahn B, Jeong-Ju O, Han T, Kim W-K, Kim S, Jung J (2013) Identification of toxicity variations in a stream affected by industrial effluents using Daphnia magna and Ulva pertusa. Original research article. J Hazard Mater 260:1042–104

    A new methodology to assess the performance of AOPs in complex samples: Application to the degradation of phenolic compounds by O3 and O3/UV-A Vis

    Full text link
    [EN] A methodology combining experimental design methodology, liquid chromatography, excitation emission matrixes (EEM) and bioassays has been applied to study the performance of O3 and O3/UVA-vis in the treatment of a mixture of eight phenolic pollutants. An experimental design methodology based on Doehlert matrixes was employed to determine the effect of pH (between 3 and 12), ozone dosage (02¿1.0¿g/h) and initial concentration of the pollutants (1¿6¿mg/L each). The following conclusions were obtained: a) acidic pH and low O3 dosage resulted in an inefficient process, b) increasing pH and O3 amount produced an enhancement of the reaction, and c) interaction of basic pH and high amounts of ozone decreased the efficiency of the process. The combination of O3/UVA-vis was able to enhance ozonation in those experimental regions were this reagent was less efficient, namely low pH and low ozone dosages. The application of EEM-PARAFAC showed four components, corresponding to the parent pollutants and three different groups of reaction product and its evolution with time. Bioassys indicated important detoxification (from 100% to less than 30% after 1¿min of treatment with initial pollutant concentration of 6¿mg/L, pH¿=¿9 and ozone dosage of 0.8¿g/h) according to the studied methods (D. magna and P. subcapitata). Also estrogenic activity and dioxin-like behavior were significantly decreased.The authors thank the financial support of the European Union(PIRSES-GA-2010-269128, EnvironBOS) and Spanish Ministerio de Educación y Ciencia (CTQ2015-69832-C4-4-R). Sara García-Ballesteros thanks Spanish Ministerio de Economía y Competitividad for providing her fellowship (BES-2013-066201).García-Ballesteros, S.; Mora Carbonell, M.; Vicente Candela, R.; Vercher Pérez, RF.; Sabater Marco, C.; Castillo López, M.; Amat Payá, AM.... (2019). A new methodology to assess the performance of AOPs in complex samples: Application to the degradation of phenolic compounds by O3 and O3/UV-A Vis. Chemosphere. 222:114-123. https://doi.org/10.1016/j.chemosphere.2019.01.015S11412322
    corecore