1,090 research outputs found

    Load-independent characterization of trade-off fronts for operational amplifiers

    Get PDF
    Abstract—In emerging design methodologies for analog integrated circuits, the use of performance trade-off fronts, also known as Pareto fronts, is a keystone to overcome the limitations of the traditional top-down methodologies. However, most techniques reported so far to generate the front neglect the effect of the surrounding circuitry (such as the output load impedance) on the Pareto-front, thereby making it only valid for the context where the front was generated. This strongly limits its use in hierarchical analog synthesis because of the heavy dependence of key performances on the surrounding circuitry, but, more importantly, because this circuitry remains unknown until the synthesis process. We will address this problem by proposing a new technique to generate the trade-off fronts that is independent of the load that the circuit has to drive. This idea is exploited for a commonly used circuit, the operational amplifier, and experimental results show that this is a promising approach to solve the issue

    Sostenibilidad de la extracción minera del Oro implementando controles estatales

    Get PDF
    Trabajo de investigaciónRrealizar una evaluación de la explotación de un recurso no renovable como el oro, desde una perspectiva económica abordando las dimensiones ambientales y sociales para capturar los problemas principales de la extracción de este mineral en Colombia.INTRODUCCIÓN 1. METODOLOGÍA 2. MARCO TEÓRICO 3. MARCO NORMATIVO 4. DESARROLLO DEL MODELO BIBLIOGRAFÍAPregradoEconomist

    Nonlinear model predictive control for thermal management in plug-in hybrid electric vehicles

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A nonlinear model predictive control (NMPC) for the thermal management (TM) of Plug-in Hybrid Electric Vehicles (PHEVs) is presented. TM in PHEVs is crucial to ensure good components performance and durability in all possible climate scenarios. A drawback of accurate TM solutions is the higher electrical consumption due to the increasing number of low voltage (LV) actuators used in the cooling circuits. Hence, more complex control strategies are needed for minimizing components thermal stress and at the same time electrical consumption. In this context, NMPC arises as a powerful method for achieving multiple objectives in Multiple input- Multiple output systems. This paper proposes an NMPC for the TM of the High Voltage (HV) battery and the power electronics (PE) cooling circuit in a PHEV. It distinguishes itself from the previously NMPC reported methods in the automotive sector by the complexity of its controlled plant which is highly nonlinear and controlled by numerous variables. The implemented model of the plant, which is based on experimental data and multi- domain physical equations, has been validated using six different driving cycles logged in a real vehicle, obtaining a maximum error, in comparison with the real temperatures, of 2C. For one of the six cycles, an NMPC software-in-the loop (SIL) is presented, where the models inside the controller and for the controlled plant are the same. This simulation is compared to the finite-state machine-based strategy performed in the real vehicle. The results show that NMPC keeps the battery at healthier temperatures and in addition reduces the cooling electrical consumption by more than 5%. In terms of the objective function, an accumulated and weighted sum of the two goals, this improvement amounts 30%. Finally, the online SIL presented in this paper, suggests that the used optimizer is fast enough for a future implementation in the vehicle.Accepted versio

    A Critical Study of the Effect of Polymeric Fibers on the Performance of Supported Liquid Membranes in Sample Microextraction for Metals Analysis

    Get PDF
    Popularity of hollow fiber-supported liquid membranes (HF-SLM) for liquid-phase microextraction (HF-LPME) has increased in the last decades. In particular, HF-SLM are applied for sample treatment in the determination and speciation of metals. Up to the date, optimization of preconcentration systems has been focused on chemical conditions. However, criteria about fiber selection are not reflected in published works. HFs differ in pore size, porosity, wall thickness, etc., which can affect efficiency and/or selectivity of chemical systems in extraction of metals. In this work, Ag+ transport using tri-isobutylphosphine sulfide (TIBPS) has been used as a model to evaluate differences in metal transport due to the properties of three different fibers. Accurel PP 50/280 fibers, with a higher effective surface and smaller wall thickness, showed the highest efficiency for metal transport. Accurel PP Q3/2 exhibited intermediate efficiency but easier handling and, finally, Accurel PP S6/2 fibers, with a higher wall thickness, offered poorer efficiency but the highest stability and capability for metal speciation. Summarizing, selection of the polymeric support of HF-SLM is a key factor in their applicability of LPME for metals in natural waters

    Serially improved GTOs for molecular applications (SIGMA): Basis sets from H to Ne

    Full text link
    A new approach for generating Gaussian basis sets is reported and tested for atoms from H to Ne. The basis sets thus calculated, named SIGMA basis sets, range from DZ to QZ sizes and have the same composition per shell as Dunning basis sets but with different treatment of the contractions. The standard SIGMA basis sets and their augmented versions have proven to be very suitable for providing good results in atomic and molecular calculations. The performance of the new basis sets is analyzed in terms of total, correlation, and atomization energies, equilibrium distances, and vibrational frequencies in several molecules, and the results are compared at several computational levels with those obtained with the corresponding Dunning and other basis set
    corecore