210 research outputs found

    Atmospheric chemistry-climate feedbacks

    Get PDF
    We extend the theory of climate feedbacks to include atmospheric chemistry. A change in temperature caused by a radiative forcing will include, in general, a contribution from the chemical change that is fed back into the climate system; likewise, the change in atmospheric burdens caused by a chemical forcing will include a contribution from the associated climate change that is fed back into the chemical system. The theory includes two feedback gains, G_(che) and G_(cli). G_(che) is defined as the ratio of the change in equilibrium global mean temperature owing to long-lived greenhouse gas radiative forcing, under full climate-chemistry coupling, to that in the absence of coupling. G_(cli) is defined as the ratio of the change in equilibrium mean aerosol or gas-phase burdens owing to chemical forcing under full coupling, to that in the absence of coupling. We employ a climate-atmospheric chemistry model based on the Goddard Institute for Space Studies (GISS) GCM II', including tropospheric gas-phase chemistry, sulfate, nitrate, ammonium, black carbon, and organic carbon. While the model describes many essential couplings between climate and atmospheric chemistry, not all couplings are accounted for, such as indirect aerosol forcing and the role of natural dust and sea salt aerosols. Guided by the feedback theory, we perform perturbation experiments to quantify G_(che) and G_(cli). We find that G_(che) for surface air temperature is essentially equal to 1.00 on a planetary scale. Regionally, G_(che) is estimated to be 0.80–1.30. The gains are small compared to those of the physical feedbacks in the climate system (e.g., water vapor, and cloud feedbacks). These values for G_(che) are robust for the specific model used, but may change when using more comprehensive climate-atmospheric chemistry models. Our perturbation experiments do not allow one to obtain robust values for G_(cli). Globally averaged, the values range from 0.99 to 1.28, depending on the chemical species, while, in areas of high pollution, G_(cli) can be up to 1.15 for ozone, and as large as 1.40 for total aerosol. These preliminary values indicate a significant role of climate feedbacks in the atmospheric chemistry system

    Acoustical properties in inhaling singing : a case-study

    Get PDF
    A highly experienced versatile female professional singer displaying no apparent vocal complaint, developed inhaling singing, an innovative approach to reverse phonation. Although there are some reports in literature that describe the characteristics of ingressive phonation and sounds, to the best of our knowledge, no reports on actual inhaling singing are available in literature. This paper reports a case study on the acoustical analysis of inhaling singing, comparing this innovative technique with traditional exhaling singing. As this is rather undiscovered territory, we have decided to address several questions: is it possible to match the same pitches using inhaling singing compared to exhaling singing? Is the harmonic structure and energy distribution similar? Is it possible to maintain the same phonation duration in both techniques? Are there differences in volume and tessitura (vocal range)? This paper, reporting on the experience of one individual, demonstrates that a tessitura can be mastered in inhaling singing. Spectral analysis reveals a similar frequency distribution in both conditions. However, in inhaling singing the energy of the harmonics is significantly lower for the first 3 overtones, while the maximum phonation time is larger, than in exhaling singing. The singer reports that less effort is required for inhaling singing in the high register. As such, inhaling singing offers new possibilities for vocal performance

    Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols

    Get PDF
    We explore the extent to which chemistry-aerosol-climate coupling influences predictions of future ozone and aerosols as well as future climate using the Goddard Institute for Space Studies (GISS) general circulation model II' with on-line simulation of tropospheric ozone-NO_x-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. Based on IPCC scenario A2, year 2100 ozone, aerosols, and climate simulated with full chemistry-aerosol-climate coupling are compared with those simulated from a stepwise approach. In the stepwise method year 2100 ozone and aerosols are first simulated using present-day climate and year 2100 emissions (denoted as simulation CHEM2100sw) and year 2100 climate is then predicted using offline monthly fields of O_3 and aerosols from CHEM2100sw (denoted as simulation CLIM2100sw). The fully coupled chemistry-aerosol-climate simulation predicts a 15% lower global burden of O_3 for year 2100 than the simulation CHEM2100sw which does not account for future changes in climate. Relative to CHEM2100sw, year 2100 column burdens of all aerosols in the fully coupled simulation exhibit reductions of 10–20 mg m^−2 in DJF and up to 10 mg m^−2 in JJA in mid to high latitudes in the Northern Hemisphere, reductions of up to 20 mg m^−2 over the eastern United States, northeastern China, and Europe in DJF, and increases of 30–50 mg m^−2 over populated and biomass burning areas in JJA. As a result, relative to year 2100 climate simulated from CLIM2100sw, full chemistry-aerosol-climate coupling leads to a stronger net global warming by greenhouse gases, tropospheric ozone and aerosols in year 2100, with a global and annual mean surface air temperature higher by 0.42 K. For simulation of year 2100 aerosols, we conclude that it is important to consider the positive feedback between future aerosol direct radiative forcing and future aerosol concentrations; increased aerosol concentrations lead to reductions in convection and precipitation (or wet deposition of aerosols), further increasing lower tropospheric aerosol concentrations

    Observations of aerosols in the free troposphere and marine boundary layer of the subtropical Northeast Atlantic: discussion of processes determining their size distribution

    Get PDF
    During July 1994, submicron aerosol size distributions were measured at two sites on Tenerife, Canary Islands. One station was located in the free troposphere (FT), the other in the marine boundary layer (MBL). Transport toward these two sites was strongly decoupled: the FT was first affected by dust and sulfate-laden air masses advecting from North Africa and later by clean air masses originating over the North Atlantic, whereas the MBL was always subject to the northeasterly trade wind circulation. In the FT the submicron aerosol distribution was predominantly monomodal with a geometric mean diameter of 120 nm and 55 nm during dusty and clean conditions, respectively. The relatively small diameter during the clean conditions indicates that the aerosol originated in the upper troposphere rather than over continental areas or in the lower stratosphere. During dusty conditions the physical and chemical properties of the submicron aerosol suggest that it has an anthropogenic origin over southern Europe and that it remains largely externally mixed with the supermicron mineral dust particles during its transport over North Africa to Tenerife. Apart from synoptic variations, a strong diurnal variation in the aerosol size distribution is observed at the FT site, characterized by a strong daytime mode of ultrafine particles. This is interpreted as being the result of photoinduced nucleation in the upslope winds, which are perturbed by anthropogenic and biogenic emissions on the island. No evidence was found for nucleation occurring in the undisturbed FT. The MBL site was not strongly affected by European pollution during the period of the measurements. The MBL aerosol size distribution was bimodal, but the relative concentration of Aitken and accumulation mode varied strongly. The accumulation mode can be related to cloud processing of the Aitken mode but also to pollution aerosol which was advected within the MBL or entrained from the FT. No bursts of nucleation were observed within the MBL

    Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts

    Get PDF
    We lack a deep understanding of genetic and metabolic attributes specializing in microbial consortia for initial and subsequent waves of colonization of our body habitats. Here we show that phylogenetically interspersed bacteria in Clostridium cluster XIVa, an abundant group of bacteria in the adult human gut also known as the Clostridium coccoides or Eubacterium rectale group, contains species that have evolved distribution patterns consistent with either early successional or stable gut communities. The species that specialize to the infant gut are more likely to associate with systemic infections and can reach high abundances in individuals with Inflammatory Bowel Disease (IBD), indicating that a subset of the microbiota that have adapted to pioneer/opportunistic lifestyles may do well in both early development and with disease. We identified genes likely selected during adaptation to pioneer/opportunistic lifestyles as those for which early succession association and not phylogenetic relationships explain genomic abundance. These genes reveal potential mechanisms by which opportunistic gut bacteria tolerate osmotic and oxidative stress and potentially important aspects of their metabolism. These genes may not only be biomarkers of properties associated with adaptation to early succession and disturbance, but also leads for developing therapies aimed at promoting reestablishment of stable gut communities following physiologic or pathologic disturbances

    Paul Eelen : reflections on life and work

    Get PDF
    This manuscript is part of a special issue to commemorate professor Paul Eelen, who passed away on August 21, 2016. Paul was a clinically oriented scientist, for whom learning principles (Pavlovian or operant) were more than salivary responses and lever presses. His expertise in learning psychology and his enthusiasm to translate this knowledge to clinical practice inspired many inside and outside academia. Several of his original writings were in the Dutch language. Instead of editing a special issue with contributions of colleagues and friends, we decided to translate a selection of his manuscripts to English to allow wide access to his original insights and opinions. Even though the manuscripts were written more than two decades ago, their content is surprisingly contemporary. This introductory article presents a reflection on Paul’s career and legacy and introduces the selected manuscripts that are part of this special issue

    Climate and Air Quality Impacts of Combined Climate Change and Air Pollution Policy Scenarios

    Get PDF
    This report describes an assessment of the co-benefits for air pollution of recently developed climate mitigation scenarios that inform the European Union policy making. The climate mitigation scenarios were obtained with the POLES equilibrium model for a business-as-usual and greenhouse gas reduction case. In the present work, these scenarios were expanded to air pollution emissions. The resulting set of global -spatially and sector disaggregated- air pollution emissions were evaluated with the global chemistry transport model TM5, to calculate levels of particulate matter and ozone. Subsequently, air pollution impacts on human health, ecosystems and climate were evaluated. The resulting set of four scenarios thus reflect various combinations of worldwide air pollution and climate policies: BAU (¿no further climate and air pollution policies since the 2000 base-year¿); CARB (¿climate policy only¿), BAP (¿no further climate policy, but progressive air pollution policies, to address worldwide increasing levels of air pollution) and CAP (¿combination of ambitious climate and air pollution policies¿). The implementation of a global climate policy (CARB) has substantial co-benefits for reducing air pollutant emissions. Compared to BAU, in 2050 global emissions of SO2 are reduced by ca. 75 %, NOx by 55 %, CO (40 %) and other pollutants VOC, OC and BC) about 25% %. These emission reductions result from cleaner technologies and decreased fuel demand, and correspond to a CO2 emission reduction of more than 60 %. Advanced air pollution abatement technologies can obtain similar air pollutant reductions ranging between 35 % (NOx), 45 % (OC, BC), 60 % (SO2) and 70% (CO), however in this case the CO2 emissions reach unabated levels of 55 Pg CO2/yr. The combined air pollution and climate policy case (CAP) further reduces BAP air pollution emissions by 10-30 %. Noticeable are the decreases of methane emissions by ca. 60 %, which have important impacts on ozone air quality and climate. The environmental benefits of the emission reductions are substantial. In 2050, average global life expectancy increases by 3.2 months/person for BAP (compared to BAU) and further increases by 3.7 to 6.9 months/person if additionally climate policies are introduced (CAP). Compared to 2000, only the CAP scenario leads to global improvement of life-expectancy (by about 3 months/person), while all other scenarios lead to higher particulate concentration and lower life expectancies, mainly driven by pollution developments in South and East Asia. These improvements in CAP are due to decreasing concentrations of primary (OC, BC) and secondary (SO4, NO3) aerosol. This work shows that combining air pollution and climate policies is in some regions the only way to stabilize or decrease the levels of air pollution and reducing impacts on human health. The global average life expectancy, however, masks large regional differences: e.g. current and future levels of air pollution in Asia are much larger than in Europe or the United States. Crop losses due to ozone are reduced by 4.7 % by implementing progressive air pollution policies, and could be reduced by another 2 %, by introducing additional climate policies. Climate policies target at limiting long-term (2100) climate change. On the intermediate time-scales (2030-2050), however, there might be important trade-offs to be considered in climate and air pollution policies, since reducing particulate matter and precursor (especially sulfur) emissions, are likely to lead to a net positive radiative forcing and a warming of climate. Since reductions of particulate matter and ozone are necessary to protect human health and vegetation, combined air pollution and climate policies are more beneficial for both climate and air pollution than stand-alone policies. There is scope to preferentially mitigate emissions of Black Carbon and methane, which is beneficial for climate and human health.JRC.DDG.H.2-Climate chang

    What Can We Learn about Ship Emission Inventories from Measurements of Air Pollutants over the Mediterranean Sea?

    Get PDF
    Ship emission estimates diverge widely for all chemical compounds for several reasons: use of different methodologies (bottom-up or top-down), activity data and emission factors can easily result in a difference from a factor of 1.5 to two orders of magnitude. Despite these large discrepancies in existing ship emission inventories for air pollutants very little has been done to evaluate their consistency with atmospheric measurements at open sea. Combining three sets of observational data ¿ ozone and black carbon measurements sampled at three coastal sites and on board of a Mediterranean cruise ship, as well as satellite observations of atmospheric NO2 column concentration over the same area ¿ we assess the accuracy of the three most commonly used ship emission inventories, EDGAR FT (Olivier et al., 2005), emissions described by Eyring et al. (2005) and emissions reported by EMEP (Vestreng et al., 2007). Our tool is a global atmospheric chemistry transport model which simulates the chemical state of the Mediterranean atmosphere applying different ship emission inventories. The simulated contributions of ships to air pollutant levels in the Mediterranean atmosphere are significant but strongly depend on the inventory applied. Close to the major shipping routes relative contributions vary from 10 to 50% for black carbon and from 2 to 12% for ozone in the surface layer, as well as from 5 to 20% for nitrogen dioxide atmospheric column burden. The relative contributions are still significant over the North African coast, but less so over the South European coast. The observations poorly constrain the ship emission inventories in the Eastern Mediterranean where the influence of uncertain land based emissions, the model transport and wet deposition are at least as important as the signal from ships. In the Western Mediterranean, the regional EMEP emission inventory gives the best match with most measurements, followed by Eyring for NO2 and ozone and by EDGAR for black carbon. Given the uncertainty of the measurements and the model, each of the three emission inventories could actually be right, implying that large uncertainties in ship emissions need to be considered for future scenario analysis.JRC.H.2-Climate chang

    An Automated Method for Rapid Identification of Putative Gene Family Members in Plants

    Get PDF
    BACKGROUND: Gene duplication events have played a significant role in genome evolution, particularly in plants. Exhaustive searches for all members of a known gene family as well as the identification of new gene families has become increasingly important. Subfunctionalization via changes in regulatory sequences following duplication (adaptive selection) appears to be a common mechanism of evolution in plants and can be accompanied by purifying selection on the coding region. Such negative selection can be detected by a bias toward synonymous over nonsynonymous substitutions. However, the process of identifying this bias requires many steps usually employing several different software programs. We have simplified the process and significantly shortened the time required by condensing many steps into a few scripts or programs to rapidly identify putative gene family members beginning with a single query sequence. RESULTS: In this report we 1) describe the software tools (SimESTs, PCAT, and SCAT) developed to automate the gene family identification, 2) demonstrate the validity of the method by correctly identifying 3 of 4 PAL gene family members from Arabidopsis using EST data alone, 3) identify 2 to 6 CAD gene family members from Glycine max (previously unidentified), and 4) identify 2 members of a putative Glycine max gene family previously unidentified in any plant species. CONCLUSION: Gene families in plants, particularly that subset where purifying selection has occurred in the coding region, can be identified quickly and easily by integrating our software tools and commonly available contig assembly and ORF identification programs
    corecore