9 research outputs found

    Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release

    Get PDF
    Tissue damage causes inflammation, by recruiting leukocytes and activating them to release proinflammatory mediators. We show that high-mobility group box 1 protein (HMGB1) orchestrates both processes by switching among mutually exclusive redox states. Reduced cysteines make HMGB1 a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine and further cysteine oxidation to sulfonates by reactive oxygen species abrogates both activities. We show that leukocyte recruitment and activation can be separated. A nonoxidizable HMGB1 mutant in which serines replace all cysteines (3S- HMGB1) does not promote cytokine production, but is more effective than wild-type HMGB1 in recruiting leukocytes in vivo. BoxA, a HMGB1 inhibitor, interferes with leukocyte recruitment but not with activation. We detected the different redox forms of HMGB1 ex vivo within injured muscle. HMGB1 is completely reduced at first and disulfide-bonded later. Thus, HMGB1 orchestrates both key events in sterile inflammation, leukocyte recruitment and their induction to secrete inflammatory cytokines, by adopting mutually exclusive redox states

    Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release

    Get PDF
    Tissue damage causes inflammation, by recruiting leukocytes and activating them to release proinflammatory mediators. We show that high-mobility group box 1 protein (HMGB1) orchestrates both processes by switching among mutually exclusive redox states. Reduced cysteines make HMGB1 a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine and further cysteine oxidation to sulfonates by reactive oxygen species abrogates both activities. We show that leukocyte recruitment and activation can be separated. A nonoxidizable HMGB1 mutant in which serines replace all cysteines (3S- HMGB1) does not promote cytokine production, but is more effective than wild-type HMGB1 in recruiting leukocytes in vivo. BoxA, a HMGB1 inhibitor, interferes with leukocyte recruitment but not with activation. We detected the different redox forms of HMGB1 ex vivo within injured muscle. HMGB1 is completely reduced at first and disulfide-bonded later. Thus, HMGB1 orchestrates both key events in sterile inflammation, leukocyte recruitment and their induction to secrete inflammatory cytokines, by adopting mutually exclusive redox states

    The interactive effect of some environmental factors on the growth, agar yield and quality of Gracilariopsis bailinae (Zhang et Xia) cultured in tanks

    Get PDF
    The single and interactive effects of light and temperature, salinity, and urea enrichment on the growth and agar yield and quality of Gracilariopsis bailinae were determined under indoor and outdoor tank conditions. Culture period was 6 weeks. Growth rate reached its peak on the second week in all culture conditions and gradually decreased towards the end of the culture period. Higher growth rates were obtained in seaweed cultured in outdoor (0.27-1.12% day-1) than in indoor (0.21-0.72% day-1) tanks; with urea enrichment and lower salinity levels (15-25ppt). A significant interactive effect was demonstrated between and among the environmental parameters on the growth of the seaweed. Highest gel strength (870 g cm-1) and lowest sulfate content (3.1 µg mg-1) were obtained at 25ppt, without urea enrichment and in indoor tanks. A significant interactive effect of light intensity and temperature-urea enrichment was ascertained on agar yield; also of light intensity and temperature-salinity on gel strength and sulfate content. Positive and negative correlation was likewise established between agar properties

    Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization.

    No full text
    CD4(+) T cell repopulation of the gut is rarely achieved in HIV-1-infected individuals who are receiving clinically effective antiretroviral therapy. Alterations in the integrity of the mucosal barrier have been indicated as a cause for chronic immune activation and disease progression. In this study, we present evidence that persistent immune activation causes impairment of lymphocytes to respond to chemotactic stimuli, thus preventing their trafficking from the blood stream to peripheral organs. CCR6(+) and CXCR3(+) Th cells accumulate in the blood of aviremic HIV-1-infected patients on long-term antiretroviral therapy, and their frequency in the circulation positively correlates to levels of soluble CD14 in plasma, a marker of chronic immune activation. Th cells show an impaired response to chemotactic stimuli both in humans and in the pathogenic model of SIV infection, and this defect is due to hyperactivation of cofilin and inefficient actin polymerization. Taking advantage of a murine model of chronic immune activation, we demonstrate that cytoskeleton remodeling, induced by okadaic acid, restores lymphocyte migration in response to chemokines, both in vitro and in vivo. This study calls for novel pharmacological approaches in those pathological conditions characterized by persistent immune activation and loss of trafficking of T cell subsets to niches that sustain their maturation and activities
    corecore