1,294 research outputs found

    A Statistical Model of Magnetic Islands in a Large Current Layer

    Full text link
    We develop a statistical model describing the dynamics of magnetic islands in very large current layers that develop in space plasma. Two parameters characterize the island distribution: the flux contained in the island and the area it encloses. We derive an integro-differential evolution equation for this distribution function, based on rules that govern the small-scale generation of secondary islands, the rates of island growth, and island merging. Our numerical solutions of this equation produce island distributions relevant to the magnetosphere and corona. We also derive and analytically solve a differential equation for large islands that explicitly shows the role merging plays in island growth.Comment: 4 pages, 3 figure

    Cosmic ray cutoff prediction using magnetic field from global magnetosphere MHD simulations

    Get PDF
    International audienceRelativistic particles entering the Earth's magnetosphere, i.e. cosmic rays and solar energetic particles, are of prime space weather interest because they can affect satellite operations, communications, and the safety of astronauts and airline crews and passengers. In order to mitigate the hazards that originate from such particles one needs to predict the cutoff latitudes of such particles as a function of their energies and the state of the magnetosphere. We present results from a new particle tracing code that is used to determine the cutoff latitudes of 8-15Men-1 alpha particles during the 23/24 April, 1998 geomagnetic storm and the preceding quiet time. The calculations are based on four different geomagnetic field models and compared with SAMPEX observations of alpha particles in the same energy range. The geomagnetic field models under consideration are: (i) the International Geomagnetic Reference Field (IGRF) model, (ii) the Tsyganenko "89" model (T89c), (iii) the Tsyganenko "96" model (T96), and (iv) a global magnetohydrodynamic (MHD) model of Earth's magnetosphere. Examining 11 SAMPEX cutoff latitude observations we find that the differences between the observed and the predicted cutoff latitudes are 2.3° ± 2.0° (mean) and 7.9° (maximum difference) for the IGRF model; 3.9° ± 2.4° (mean) and 6.9° (maximum difference) for the T89c model; 4.0° ± 1.4° (mean) and 5.5° (maximum difference) for the T96 model; and 2.5° ± 1.7° (mean) and 7.0° (maximum difference) for the MHD model. All models generally predict cutoff latitudes equatorward of the SAMPEX observations. The MHD model results also show steeper cutoff energy gradients with latitude compared to the empirical models and more structure in the cutoff energy versus latitude function, presumably due to the presence of boundary layers in the MHD model

    Search for an onset mechanism that operates for both CMEs and substorms

    Get PDF
    Substorms and coronal mass ejections have been cited as the most accessible examples of the explosive energy conversion phenomenon that seems to characterize one of the behavior modes of cosmic plasmas. This paper addresses the question of whether these two examples – substorms and CMEs – support or otherwise the idea that explosive energy conversion is the result of a single process operating in different places and under different conditions. As a candidate mechanism that might be common to both substorms and CMEs we use the Forbes catastrophe model for CMEs because before testing it appears to have the potential, suitably modified, to operate also for substorms. The essence of the FCM is a sudden onset of an imbalance of the forces acting on an incipient CME. The imbalance of forces causes the CME to start to rise. Beneath the rising CME conditions develop that favor the onset of magnetic reconnection which then releases the CME and assists its expulsion. Thus the signature of the FCM is a temporally ordered sequence in which there is first the appearance of force imbalance which leads to upward (or outward) motion of the CME which leads to magnetic reconnection under it which expedites rapid expulsion. We look for the FCM signature in the output of two global magnetospheric MHD simulations that produce substorm-like events. We find the ordered sequence of events as stated but with a significant difference: there is no plasmoid prior to the onset of rapid reconnection, that is, there is no counterpart to the incipient CME on which an imbalance of forces acts to initiate the action in the FCM. If this result – that rapid tailward motion precedes the rapid reconnection of substorm expansion – is ultimately verified by other studies, it suggests that a description of the cause of substorm expansion should identify the cause of the preceding rapid tailward motion, since this leads necessarily to rapid reconnection, whatever the reconnection mechanism turns out to be. Clearly then, it is important to identify the cause of the preceding tailward motion

    On the propagation of bubbles in the geomagnetic tail

    Get PDF
    Using three-dimensional magnetohydrodynamic simulations, we investigate the propagation of low-entropy magnetic flux tubes ("bubbles") in the magnetotail. Our simulations address fundamental properties of the propagation and dynamics of such flux tubes rather than the actual formation process. We find that the early evolution, after a sudden reduction of pressure and entropy on a localized flux tube, is governed by re-establishing the balance of the total pressure in the dawn-dusk and north-south directions through compression on a time scale less than about 20s for the typical magnetotail. The compression returns the equatorial pressure to its original unperturbed value, due to the fact that the magnetic field contributes only little to the total pressure, while farther away from the equatorial plane the magnetic field compression dominates. As a consequence the pressure is no longer constant along a flux tube. The subsequent evolution is characterized by earthward propagation at speeds of the order of 200-400km/s, depending on the initial amount of depletion and the cross-tail extent of a bubble. Simple acceleration without depletion does not lead to significant earthward propagation. It hence seems that both the entropy reduction and the plasma acceleration play an important role in the generation of fast plasma flows and their propagation into the near tail. Earthward moving bubbles are found to be associated with field-aligned current systems, directed earthward on the dawnward edge and tailward on the duskward edge. This is consistent with current systems attributed to observed bursty bulk flows and their auroral effects.<br><br><b>Key words.</b> Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet)nguage

    Magnetosphere-Ionosphere Coupling Through E-region Turbulence: Anomalous Conductivities and Frictional Heating

    Full text link
    Global magnetospheric MHD codes using ionospheric conductances based on laminar models systematically overestimate the cross-polar cap potential during storm time by up to a factor of two. At these times, strong DC electric fields penetrate to the E region and drive plasma instabilities that create turbulence. This plasma density turbulence induces non-linear currents, while associated electrostatic field fluctuations result in strong anomalous electron heating. These two effects will increase the global ionospheric conductance. Based on the theory of non-linear currents developed in the companion paper, this paper derives the correction factors describing turbulent conductivities and calculates turbulent frictional heating rates. Estimates show that during strong geomagnetic storms the inclusion of anomalous conductivity can double the total Pedersen conductance. This may help explain the overestimation of the cross-polar cap potentials by existing MHD codes. The turbulent conductivities and frictional heating presented in this paper should be included in global magnetospheric codes developed for predictive modeling of space weather.Comment: 13 pages, 5 figures, 2nd of two companion paper

    Resonance ionization spectroscopy of thorium isotopes - towards a laser spectroscopic identification of the low-lying 7.6 eV isomer of Th-229

    Full text link
    In-source resonance ionization spectroscopy was used to identify an efficient and selective three step excitation/ionization scheme of thorium, suitable for titanium:sapphire (Ti:sa) lasers. The measurements were carried out in preparation of laser spectroscopic investigations for an identification of the low-lying Th-229m isomer predicted at 7.6 +- 0.5 eV above the nuclear ground state. Using a sample of Th-232, a multitude of optical transitions leading to over 20 previously unknown intermediate states of even parity as well as numerous high-lying odd parity auto-ionizing states were identified. Level energies were determined with an accuracy of 0.06 cm-1 for intermediate and 0.15 cm-1 for auto-ionizing states. Using different excitation pathways an assignment of total angular momenta for several energy levels was possible. One particularly efficient ionization scheme of thorium, exhibiting saturation in all three optical transitions, was studied in detail. For all three levels in this scheme, the isotope shifts of the isotopes Th-228, Th-229, and Th-230 relative to Th-232 were measured. An overall efficiency including ionization, transport and detection of 0.6 was determined, which was predominantly limited by the transmission of the mass spectrometer ion optics
    corecore