31 research outputs found

    Boron concentrations and isotopic compositions in methane-derived authigenic carbonates : constraints and limitations in reconstructing formation conditions

    Get PDF
    The work is supported by Norwegian Research Council through the schemes PETROMAKS2-NORCRUST (grant number 255150 ) and Centre for Arctic Gas Hydrate, Environment and Climate (CAGE grant number 223259 ) as well as Lundin Norway AS. Cruise MSM57-1/-2 was funded by the German Research Foundation (DFG), the Research Center/Excellence Cluster “The Ocean in the Earth System” at MARUM–Center for Marine and Environmental Sciences, University of Bremen and funds from CAGE.The boron content and isotopic composition (δ11B), of marine carbonates have the potential to constrain CO2 chemistry during carbonate growth conditions. However, obtaining and interpreting boron compositions from authigenic carbonates in geological archives present several challenges that may substantially limit their application. In particular, contamination from non-carbonate phases during sample preparation must be carefully avoided, and a variety of controls on boron composition during authigenic growth conditions must be evaluated. To advance understanding of the use and limitations of boron in authigenic carbonates, we present data and modelling results on methane-derived authigenic carbonate (MDAC), a by-product of microbially mediated anaerobic oxidation of methane, taken from three cold seep sites along the Norwegian margin. We present a novel sequential leaching method to isolate the boron signals from the micritic (Mg-calcite) and cavity-filling (aragonitic) MDAC cements in these complex multi-phase samples. This method successfully minimizes contamination from non-carbonate phases. To investigate the factors that could potentially contribute to the observed boron signals, we construct a numerical model to simulate the evolution of MDAC δ11B and B/Ca ratios over its growth history. We show that diagenetic fluid composition, depths of precipitation, the physical properties of sediments (such as porosity), and mineral surface kinetics all contribute to the observed boron compositions in the different carbonate cements. While broad constraints may be placed on fluid composition, the multiple competing controls on boron in these diagenetic settings limit the ability to place unique solutions on fluid CO2 chemistry using boron in these authigenic carbonates.Publisher PDFPeer reviewe

    On the origin and processes controlling the elemental and isotopic composition of carbonates in hypersaline Andean lakes

    Get PDF
    H.J. and J.W.B. Rae acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement 805246).The Altiplano-Puna Plateau of the Central Andes hosts numerous lakes, playa-lakes, and salars with a great diversity and abundance of carbonates forming under extreme climatic, hydrologic, and environmental conditions. To unravel the underlying processes controlling the formation of carbonates and their geochemical signatures in hypersaline systems, we investigated coupled brine-carbonate samples in a high-altitude Andean lake using a wide suite of petrographic (SEM, XRD) and geochemical tools (δ2H, δ18O, δ13C, δ11B, major and minor ion composition, aqueous modelling). Our findings show that the inflow of hydrothermal springs in combination with strong CO2 degassing and evaporation plays an important role in creating a spatial diversity of hydro-chemical sub-environments allowing different types of microbialites (microbial mounds and mats), travertines, and fine-grained calcite minerals to form. Carbonate precipitation occurs in hot springs triggered by a shift in carbonate equilibrium by hydrothermal CO2 degassing and microbially-driven elevation of local pH at crystallisation. In lakes, carbonate precipitation is induced by evaporative supersaturation, with contributions from CO2 degassing and microbiological processes. Lake carbonates largely record the evaporitic enrichment (hence salinity) of the parent water which can be traced by Na, Li, B, and δ18O, although other factors (such as e.g., high precipitation rates, mixing with thermal waters, groundwater, or precipitation) also affect their signatures. This study is of significance to those dealing with the fractionation of oxygen, carbon, and boron isotopes and partitioning of elements in natural brine-carbonate environments. Furthermore, these findings contribute to the advancement in proxy development for these depositional environments.Peer reviewe

    Refining trace metal temperature proxies in cold-water scleractinian and stylasterid corals

    Get PDF
    The Li/Mg, Sr/Ca and oxygen isotopic (O) compositions of many marine biogenic carbonates are sensitive to seawater temperature. Corals, as cosmopolitan marine taxa with carbonate skeletons that can be precisely dated, represent ideal hosts for these geochemical proxies. However, efforts to calibrate and refine temperature proxies in cold-water corals (<20 °C) remain limited. Here we present skeletal Li/Mg, Sr/Ca, O and carbon isotope (C) data from live-collected specimens of aragonitic scleractinian corals (Balanophyllia, Caryophyllia, Desmophyllum, Enallopsammia, Flabellum, Lophelia, and Vaughanella), both aragonitic and high-Mg calcitic stylasterid genera (Stylaster and Errina), and shallow-water high-Mg calcite crustose coralline algae (Lithophyllum, Hydrolithon, and Neogoniolithon). We interpret these data in conjunction with results from previously explored taxa including aragonitic zooxanthellate scleractinia and foraminifera, and high-Mg calcite octocorals. We show that Li/Mg ratios covary most strongly with seawater temperature, both for aragonitic and high-Mg calcitic taxa, making for reliable and universal seawater temperature proxies. Combining all of our biogenic aragonitic Li/Mg data with previous calibration efforts we report a refined relationship to temperature: Li/MgAll Aragonite = (). This calibration now permits paleo-temperature reconstruction to better than ±3.4 °C (95% prediction intervals) across biogenic aragonites, regardless of taxon, from 0 to 30 °C. For taxa in this study, aragonitic stylasterid Li/Mg offers the most robust temperature proxy (Li/MgStylasterid (Arag) = ()) with a reproducibility of ±2.3 °C. For the first time, we show that high-Mg calcites have a similar exponential relationship with temperature, but with a lower intercept value (Li/Mg = ()). This calibration opens the possibility of temperature reconstruction using high-Mg calcite corals and coralline algae. The commonality in the relationship between Li/Mg and temperature transcends phylogeny and suggests abiogenic trace metal incorporation mechanism

    Ba/Ca of stylasterid coral skeletons records dissolved seawater barium concentrations

    Get PDF
    The concentration of dissolved barium in seawater ([Ba]SW) is influenced by both primary productivity and ocean circulation patterns. Reconstructing past subsurface [Ba]SW can therefore provide important information on processes which regulate global climate. Previous Ba/Ca measurements of scleractinian and bamboo deep-sea coral skeletons exhibit linear relationships with [Ba]SW, acting as archives for past Ba cycling. However, skeletal Ba/Ca ratios of the Stylasteridae – a group of widely distributed, azooxanthellate, hydrozoan coral – have not been previously studied. Here, we present Ba/Ca ratios of modern stylasterid (aragonitic, calcitic and mixed mineralogy) and azooxanthellate scleractinian skeletons, paired with published proximal hydrographic data. We find that [Ba]SW and sample mineralogy are the primary controls on stylasterid Ba/Ca, while seawater temperature exerts a weak secondary control. [Ba]SW also exerts a strong control on azooxanthellate scleractinian Ba/Ca. However, Ba-incorporation into scleractinian skeletons varies between locations and across depth gradients, and we find a more sensitive relationship between scleractinian Ba/Ca and [Ba]SW than previously reported. Paired Sr/Ca measurements suggest that this variability in scleractinian Ba/Ca may result from the influence of varying degrees of Rayleigh fractionation during calcification. We find that these processes exert a smaller influence on Ba-incorporation into stylasterid coral skeletons, a result consistent with other aspects of their skeletal geochemistry. Stylasterid Ba/Ca ratios are therefore a powerful, novel archive of past changes in [Ba]SW, particularly when measured in combination with temperature sensitive tracers such as Li/Mg or Sr/Ca. Indeed, with robust [Ba]SW and temperature proxies now established, stylasterids have the potential to be an important new archive for palaeoceanographic studies

    Boron isotopes provide insights into biomineralization, seawater pH, and ancient atmospheric CO2

    Get PDF
    Rising atmospheric CO2 and falling ocean pH place an urgency on our efforts to understand the impact of CO2 on Earth’s ecosystems and climate Studies of past perturbations of Earth’s carbon reservoirs and climate—ranging from glacial-interglacial cycles to mass extinction events—may provide valuable insights, but they require the ability to reconstruct changes in ocean-atmosphere CO2 chemistry in Earth’s past. Here, we provide an overview of the boron isotope pH proxy in marine carbonates and how it can be applied to reconstruct past ocean pH and atmospheric CO2.Publisher PDFPeer reviewe

    Reconstructing ocean pH with boron isotopes in foraminifera

    No full text
    In order to better understand the effect of CO2 on the Earth system in the future, geologists may look to CO2-induced environmental change in Earth's past. Here we describe how CO2 can be reconstructed using the boron isotopic composition (?11B) of marine calcium carbonate. We review the chemical principles that underlie the proxy, summarize the available calibration data, and detail how boron isotopes can be used to estimate ocean pH and ultimately atmospheric CO2 in the past. ?11B in a variety of marine carbonates shows a coherent relationship with seawater pH, in broad agreement with simple models for this proxy. Offsets between measured and predicted ?11B may in part be explained by physiological influences, though the exact mechanisms of boron incorporation into carbonate remain unknown. Despite these uncertainties, we demonstrate that ?11B may provide crucial constraints on past ocean acidification and atmospheric CO2

    The evolution of pCO2, ice volume and climate during the middle Miocene

    No full text
    The middle Miocene Climatic Optimum (17–15 Ma; MCO) is a period of global warmth and relatively high CO2 and is thought to be associated with a significant retreat of the Antarctic Ice Sheet (AIS). We present here a new planktic foraminiferal ?11B record from 16.6 to 11.8 Ma from two deep ocean sites currently in equilibrium with the atmosphere with respect to CO2. These new data demonstrate that the evolution of global climate during the middle Miocene (as reflected by changes in the cyrosphere) was well correlated to variations in the concentration of atmospheric CO2. What is more, within our sampling resolution (?1 sample per 300 kyr) there is no evidence of hysteresis in the response of ice volume to CO2 forcing during the middle Miocene, contrary to what is understood about the Antarctic Ice Sheet from ice sheet modelling studies. In agreement with previous data, we show that absolute levels of CO2 during the MCO were relatively modest (350–400 ppm) and levels either side of the MCO are similar or lower than the pre-industrial (200–260 ppm). These new data imply the presence of either a very dynamic AIS at relatively low CO2 during the middle Miocene or the advance and retreat of significant northern hemisphere ice. Recent drilling on the Antarctic margin and shore based studies indicate significant retreat and advance beyond the modern limits of the AIS did occur during the middle Miocene, but the complete loss of the AIS was unlikely. Consequently, it seems that ice volume and climate variations during the middle Miocene probably involved a more dynamic AIS than the modern but also some component of land-based ice in the northern hemisphere

    Calibration and application of B/Ca, Cd/Ca, and δ 11 B in Neogloboquadrina pachyderma (sinistral) to constrain CO 2 uptake in the subpolar North Atlantic during the last deglaciation

    No full text
    The North Atlantic and Norwegian Sea are prominent sinks of atmospheric CO2 today, but their roles in the past remain poorly constrained. In this study, we attempt to use B/Ca and δ11B ratios in the planktonic foraminifera Neogloboquadrina pachyderma (s

    Responses of the deep ocean carbonate system to carbon reorganization during the Last Glacial-interglacial cycle

    No full text
    We present new deep water carbonate ion concentration ([CO3 2-]) records, reconstructed using Cibicidoides wuellerstorfi B/Ca, for one core from Caribbean Basin (water depth=3623m, sill depth=1.8km) and three cores located at 2.3-4.3km water depth from t
    corecore