24 research outputs found

    Evolutionary dynamics of cytoplasmic segregation and fusion: Mitochondrial mixing facilitated the evolution of sex at the origin of eukaryotes

    Get PDF
    AbstractSexual reproduction is a trait shared by all complex life, but the complete account of its origin is missing. Virtually all theoretical work on the evolution of sex has been centered around the benefits of reciprocal recombination among nuclear genes, paying little attention to the evolutionary dynamics of multi-copy mitochondrial genomes. Here I develop a mathematical model to study the evolution of nuclear alleles inducing cell fusion in an ancestral population of clonal proto-eukaryotes. Segregational drift maintains high mitochondrial variance between clonally reproducing hosts, but the effect of segregation is opposed by cytoplasmic mixing which tends to reduce variation between cells in favor of higher heterogeneity within the cell. Despite the reduced long-term population fitness, alleles responsible for sexual cell fusion can spread to fixation. The evolution of sex requires negative epistatic interactions between mitochondrial mutations under strong purifying selection, low mutation load and weak mitochondrial-nuclear associations. I argue that similar conditions could have been maintained during the late stages of eukaryogenesis, facilitating the evolution of sexual cell fusion and meiotic recombination without compromising the stability of the emerging complex cell

    Organelle bottlenecks facilitate evolvability by traversing heteroplasmic fitness valleys

    Get PDF
    Bioenergetic organelles—mitochondria and plastids—retain their own genomes (mtDNA and ptDNA), and these organelle DNA (oDNA) molecules are vital for eukaryotic life. Like all genomes, oDNA must be able to evolve to suit new environmental challenges. However, mixed oDNA populations in cells can challenge cellular bioenergetics, providing a penalty to the appearance and adaptation of new mutations. Here we show that organelle “bottlenecks,” mechanisms increasing cell-to-cell oDNA variability during development, can overcome this mixture penalty and facilitate the adaptation of beneficial mutations. We show that oDNA heteroplasmy and bottlenecks naturally emerge in evolutionary simulations subjected to fluctuating environments, demonstrating that this evolvability is itself evolvable. Usually thought of as a mechanism to clear damaging mutations, organelle bottlenecks therefore also resolve the tension between intracellular selection for pure cellular oDNA populations and the “bet-hedging” need for evolvability and adaptation to new environments. This general theory suggests a reason for the maintenance of organelle heteroplasmy in cells, and may explain some of the observed diversity in organelle maintenance and inheritance across taxa.publishedVersio

    Beyond the “selfish mitochondrion” theory of uniparental inheritance

    Get PDF
    “Selfish” gene theories have offered invaluable insight into eukaryotic genome evolution, but they can also be misleading. The “selfish mitochondrion” hypothesis, developed in the 90s explained uniparental organelle inheritance as a mechanism of conflict resolution, improving cooperation between genetically distinct compartments of the cell. But modern population genetic models provided a more general explanation for uniparental inheritance based on mutational variance redistribution, modulating the efficiency of both purifying and adaptive selection. Nevertheless, “selfish” conflict theories still dominate the literature. While these hypotheses are rich in metaphor and highly intuitive, selective focus on only one type of mitochondrial mutation limits the generality of our understanding and hinders progress in mito-nuclear evolution theory. Recognizing that uniparental inheritance may have evolved – and is maintained across the eukaryotic tree of life – because of its influence on mutational variance and improved selection will only increase the generality of our evolutionary reasoning, retaining “selfish” conflict explanations as a special case of a much broader theory

    Selection for biparental inheritance of mitochondria under hybridization and mitonuclear fitness interactions

    Get PDF
    Uniparental inheritance (UPI) of mitochondria predominates over biparental inheritance (BPI) in most eukaryotes. However, examples of BPI of mitochondria, or paternal leakage, are becoming increasingly prevalent. Most reported cases of BPI occur in hybrids of distantly related sub-populations. It is thought that BPI in these cases is maladaptive; caused by a failure of female or zygotic autophagy machinery to recognize divergent male-mitochondrial DNA ‘tags’. Yet recent theory has put forward examples in which BPI can evolve under adaptive selection, and empirical studies across numerous metazoan taxa have demonstrated outbreeding depression in hybrids attributable to disruption of population-specific mitochondrial and nuclear genotypes (mitonuclear mismatch). Based on these developments, we hypothesize that BPI may be favoured by selection in hybridizing populations when fitness is shaped by mitonuclear interactions. We test this idea using a deterministic, simulation-based population genetic model and demonstrate that BPI is favoured over strict UPI under moderate levels of gene flow typical of hybridizing populations. Our model suggests that BPI may be stable, rather than a transient phenomenon, in hybridizing populations.publishedVersio

    Avoiding organelle mutational meltdown across eukaryotes with or without a germline bottleneck

    Get PDF
    Mitochondrial DNA (mtDNA) and plastid DNA (ptDNA) encode vital bioenergetic apparatus, and mutations in these organelle DNA (oDNA) molecules can be devastating. In the germline of several animals, a genetic “bottleneck” increases cell-to-cell variance in mtDNA heteroplasmy, allowing purifying selection to act to maintain low proportions of mutant mtDNA. However, most eukaryotes do not sequester a germline early in development, and even the animal bottleneck remains poorly understood. How then do eukaryotic organelles avoid Muller’s ratchet—the gradual buildup of deleterious oDNA mutations? Here, we construct a comprehensive and predictive genetic model, quantitatively describing how different mechanisms segregate and decrease oDNA damage across eukaryotes. We apply this comprehensive theory to characterise the animal bottleneck with recent single-cell observations in diverse mouse models. Further, we show that gene conversion is a particularly powerful mechanism to increase beneficial cell-to-cell variance without depleting oDNA copy number, explaining the benefit of observed oDNA recombination in diverse organisms which do not sequester animal-like germlines (for example, sponges, corals, fungi, and plants). Genomic, transcriptomic, and structural datasets across eukaryotes support this mechanism for generating beneficial variance without a germline bottleneck. This framework explains puzzling oDNA differences across taxa, suggesting how Muller’s ratchet is avoided in different eukaryotes.publishedVersio

    Selection for mitochondrial quality drives the evolution of two sexes with germline

    No full text
    <p>Presentation slides for the "Selection for mitochondrial quality drives the evolution of two sexes with germline"</p

    Mitochondrial variation in the evolution of germline

    No full text
    <p>Mitochondrial fitness variation together with the mutation accumulation could be responsible for the evolution of several metazoan traits, including anisogamy and early segregated germline.</p

    Selection for biparental inheritance of mitochondria under hybridization and mitonuclear fitness interactions

    No full text
    Uniparental inheritance (UPI) of mitochondria predominates over biparental inheritance (BPI) in most eukaryotes. However, examples of BPI of mitochondria, or paternal leakage, are becoming increasingly prevalent. Most reported cases of BPI occur in hybrids of distantly related sub-populations. It is thought that BPI in these cases is maladaptive; caused by a failure of female or zygotic autophagy machinery to recognize divergent male-mitochondrial DNA ‘tags’. Yet recent theory has put forward examples in which BPI can evolve under adaptive selection, and empirical studies across numerous metazoan taxa have demonstrated outbreeding depression in hybrids attributable to disruption of population-specific mitochondrial and nuclear genotypes (mitonuclear mismatch). Based on these developments, we hypothesize that BPI may be favoured by selection in hybridizing populations when fitness is shaped by mitonuclear interactions. We test this idea using a deterministic, simulation-based population genetic model and demonstrate that BPI is favoured over strict UPI under moderate levels of gene flow typical of hybridizing populations. Our model suggests that BPI may be stable, rather than a transient phenomenon, in hybridizing populations

    Evolution of empathetic moral evaluation

    No full text
    Social norms can promote cooperation by assigning reputations to individuals based on their past actions. A good reputation indicates that an individual is likely to reciprocate. A large body of research has established norms of moral assessment that promote cooperation, assuming reputations are objective. But without a centralized institution to provide objective evaluation, opinions about an individual's reputation may differ across a population. In this setting we study the role of empathy-the capacity to form moral evaluations from another person's perspective. We show that empathy tends to foster cooperation by reducing the rate of unjustified defection. The norms of moral evaluation previously considered most socially beneficial depend on high levels of empathy, whereas different norms maximize social welfare in populations incapable of empathy. Finally, we show that empathy itself can evolve through social contagion. We conclude that a capacity for empathy is a key component for sustaining cooperation in societies.</p
    corecore