1,632 research outputs found

    Predictions for Impurity-Induced Tc Suppression in the High-Temperature Superconductors

    Full text link
    We address the question of whether anisotropic superconductivity is compatible with the evidently weak sensitivity of the critical temperature Tc to sample quality in the high-Tc copper oxides. We examine this issue quantitatively by solving the strong-coupling Eliashberg equations numerically as well as analytically for s-wave impurity scattering within the second Born approximation. For pairing interactions with a characteristically low energy scale, we find an approximately universal dependence of the d-wave superconducting transition temperature on the planar residual resistivity which is independent of the details of the microscopic pairing. These results, in conjunction with future systematic experiments, should help elucidate the symmetry of the order parameter in the cuprates.Comment: 13 pages, 4 figures upon request, revtex version

    (Quantumness in the context of) Resource Theories

    Full text link
    We review the basic idea behind resource theories, where we quantify quantum resources by specifying a restricted class of operations. This divides the state space into various sets, including states which are free (because they can be created under the class of operations), and those which are a resource (because they cannot be). One can quantify the worth of the resource by the relative entropy distance to the set of free states, and under certain conditions, this is a unique measure which quantifies the rate of state to state transitions. The framework includes entanglement, asymmetry and purity theory. It also includes thermodynamics, which is a hybrid resource theory combining purity theory and asymmetry. Another hybrid resource theory which merges purity theory and entanglement can be used to study quantumness of correlations and discord, and we present quantumness in this more general framework of resource theories.Comment: review articl

    Geometric picture of quantum discord for two-qubit quantum states

    Full text link
    Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. Exact results are known only for very special states, namely, two-qubit X-shaped states. We present in this paper a geometric viewpoint, from which two-qubit quantum discord can be described clearly. The known results about X state discord are restated in the directly perceivable geometric language. As a consequence, the dynamics of classical correlations and quantum discord for an X state in the presence of decoherence is endowed with geometric interpretation. More importantly, we extend the geometric method to the case of more general states, for which numerical as well as analytica results about quantum discord have not been found yet. Based on the support of numerical computations, some conjectures are proposed to help us establish geometric picture. We find that the geometric picture for these states has intimate relationship with that for X states. Thereby in some cases analytical expressions of classical correlations and quantum discord can be obtained.Comment: 9 figure

    Antiferromagnetic phase of the gapless semiconductor V3Al

    Full text link
    Discovering new antiferromagnetic compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The antiferromagnetic gapless semiconducting D03 phase of V3Al was successfully synthesized via arc-melting and annealing. The antiferromagnetic properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely-oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-third of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing antiferromagnetic elements.Comment: Accepted to Physics Review B on 02/23/1

    Measuring the Impact of Social Justice Teaching: Research Design and Oversight

    Get PDF
    Research and the production of scholarship is a fundamental part of being a legal academic. Such endeavors identify issues and answer questions that further understanding of the law, the profession, and the justice system itself. Research and scholarship in the legal academy traditionally meant the study of law and legal theory. A growing body of legal academics are focusing research and scholarship on legal education itself, as well as research that measures the impact of legal education on the development of students\u27 practical and professional skills. The impact of clinical legal education is an important aspect of this scholarship. This article explores how thoughtfully designed research projects can measure the impact of social justice teaching, using examples and experience gleaned from the evaluation and research component of a medical legal partnership and its affiliated law school clinic. The article examines principles of good research design, the art of formulating research questions, and the potential uses for resulting data. It also identifies critical steps and issues to consider when developing a research project

    Wavefront Orientation Estimation Based on Progressive Bingham Filtering

    Get PDF

    Theory of the c-Axis Penetration Depth in the Cuprates

    Full text link
    Recent measurements of the London penetration depth tensor in the cuprates find a weak temperature dependence along the c-direction which is seemingly inconsistent with evidence for d-wave pairing deduced from in-plane measurements. We demonstrate in this paper that these disparate results are not in contradiction, but can be explained within a theory based on incoherent quasiparticle hopping between the CuO2 layers. By relating the calculated temperature dependence of the penetration depth \lambda_c(T) to the c-axis resistivity, we show how the measured ratio \lambda_c^2(0) / \lambda_c^2(T) can provide insight into the behavior of c-axis transport below Tc and the related issue of ``confinement.''Comment: 4 pages, REVTEX with psfig, 3 PostScript figures included in compressed for

    The Terminal Process

    Get PDF

    The Effect of Surfaces on the Tunneling Density of States of an Anisotropically Paired Superconductor

    Full text link
    We present calculations of the tunneling density of states in an anisotropically paired superconductor for two different sample geometries: a semi-infinite system with a single specular wall, and a slab of finite thickness and infinite lateral extent. In both cases we are interested in the effects of surface pair breaking on the tunneling spectrum. We take the stable bulk phase to be of dx2y2d_{x^2-y^2} symmetry. Our calculations are performed within two different band structure environments: an isotropic cylindrical Fermi surface with a bulk order parameter of the form Δkx2ky2\Delta\sim k_x^2-k_y^2, and a nontrivial tight-binding Fermi surface with the order parameter structure coming from an anti-ferromagnetic spin-fluctuation model. In each case we find additional structures in the energy spectrum coming from the surface layer. These structures are sensitive to the orientation of the surface with respect to the crystal lattice, and have their origins in the detailed form of the momentum and spatial dependence of the order parameter. By means of tunneling spectroscopy, one can obtain information on both the anisotropy of the energy gap, |\Delta(\p)|, as well as on the phase of the order parameter, \Delta(\p) = |\Delta(\p)|e^{i\varphi(\p)}.Comment: 14 pages of revtex text with 11 compressed and encoded figures. To appear in J. Low Temp. Phys., December, 199
    corecore