152 research outputs found

    Identification of protein biomarkers for prediction of response to platinum-based treatment regimens in patients with non-small cell lung cancer

    Get PDF
    The majority of patients with resected stage II-IIIA non-small cell lung cancer (NSCLC) are treated with platinum-based adjuvant chemotherapy (ACT) in a one-size-fits-all approach. However, a significant number of patients do not derive clinical benefit, and no predictive patient selection biomarker is currently available. Using mass spectrometry-based proteomics, we have profiled tumour resection material of 2 independent, multi-centre cohorts of in total 67 patients with NSCLC who underwent ACT. Unsupervised cluster analysis of both cohorts revealed a poor response/survival sub-cluster composed of ~ 25% of the patients, that displayed a strong epithelial-mesenchymal transition signature and stromal phenotype. Beyond this stromal sub-population, we identified and validated platinum response prediction biomarker candidates involved in pathways relevant to the mechanism of action of platinum drugs, such as DNA damage repair, as well as less anticipated processes such as those related to the regulation of actin cytoskeleton. Integration with pre-clinical proteomics data supported a role for several of these candidate proteins in platinum response prediction. Validation of one of the candidates (HMGB1) in a third independent patient cohort using immunohistochemistry highlights the potential of translating these proteomics results to clinical practice.</p

    The revised role of TGF-β in aortic aneurysms in Marfan syndrome

    Get PDF
    BACKGROUND\nRecently, we demonstrated that losartan reduced the aortic root dilatation rate (AoDR) in adults with Marfan syndrome (MFS); however, responsiveness was diverse. The aim was to determine the role of transforming growth factor-β (TGF-β) as therapeutic biomarker for effectiveness of losartan on AoDR.\nMETHODS\nBaseline plasma TGF-β levels of 22 healthy controls and 99 MFS patients, and TGF-β levels after 1 month of losartan treatment in 42 MFS patients were measured. AoDR was assessed by magnetic resonance imaging at baseline and after 3 years of follow-up.\nRESULTS\nPatients with MFS had higher TGF-β levels compared with healthy controls (121 pg/ml versus 54 pg/mL, p = 0.006). After 1 month of therapy, losartan normalised the TGF-β level in 15 patients (36%); the other 27 patients (64%) showed a significant increase of TGF-β. After 3 years of losartan therapy, patients with a decrease in TGF-β had significantly higher AoDR compared with patients with increased TGF-β (1.5 mm/3 years versus 0.5 mm/3 years, p = 0.04). Patients showing a decrease in TGF-β after losartan therapy had significantly elevated baseline TGF-β levels compared with patients with increased TGF-β (189 pg/ml versus 94 pg/ml, p = 0.05).\nCONCLUSION\nPatients responding to losartan therapy with a reduction of the plasma TGF-β level had higher baseline TGF-β levels and a higher AoDR. Most likely, TGF-β levels may be considered to be a readout of the disease state of the aorta. We propose that increased angiotensin II is the initiator of aorta dilatation and is responsible for increased TGF-β levels in MFS. The concept of TGF-β as initiator of aortic dilatation in MFS patients should be nuanced.Medical Biochemistr

    RNA isolation for transcriptomics of human and mouse small skin biopsies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isolation of RNA from skin biopsies presents a challenge, due to the tough nature of skin tissue and a high presence of RNases. As we lacked the dedicated equipment, i.e. homogenizer or bead-beater, needed for the available RNA from skin isolation methods, we adapted and tested our zebrafish single-embryo RNA-isolation protocol for RNA isolation from skin punch biopsies.</p> <p>Findings</p> <p>We tested our new RNA-isolation protocol in two experiments: a large-scale study with 97 human skin samples, and a small study with 16 mouse skin samples. Human skin was sampled with 4.0 mm biopsy punches and for the mouse skin different punch diameter sizes were tested; 1.0, 1.5, 2.0, and 2.5 mm. The average RNA yield in human samples was 1.5 μg with an average RNA quality RIN value of 8.1. For the mouse biopsies, the average RNA yield was 2.4 μg with an average RIN value of 7.5. For 96% of the human biopsies and 100% of the mouse biopsies we obtained enough high-quality RNA. The RNA samples were successfully tested in a transcriptomics analysis using the Affymetrix and Roche NimbleGen platforms.</p> <p>Conclusions</p> <p>Using our new RNA-isolation protocol, we were able to consistently isolate high-quality RNA, which is apt for further transcriptomics analysis. Furthermore, this method is already useable on biopsy material obtained with a punch diameter as small as 1.5 mm.</p

    Inflammation Aggravates Disease Severity in Marfan Syndrome Patients

    Get PDF
    BACKGROUND: Marfan syndrome (MFS) is a pleiotropic genetic disorder with major features in cardiovascular, ocular and skeletal systems, associated with large clinical variability. Numerous studies reveal an involvement of TGF-beta signaling. However, the contribution of tissue inflammation is not addressed so far. METHODOLOGY/PRINCIPAL FINDINGS: Here we showed that both TGF-beta and inflammation are up-regulated in patients with MFS. We analyzed transcriptome-wide gene expression in 55 MFS patients using Affymetrix Human Exon 1.0 ST Array and levels of TGF-beta and various cytokines in their plasma. Within our MFS population, increased plasma levels of TGF-beta were found especially in MFS patients with aortic root dilatation (124 pg/ml), when compared to MFS patients with normal aorta (10 pg/ml; p = 8x10(-6), 95% CI: 70-159 pg/ml). Interestingly, our microarray data show that increased expression of inflammatory genes was associated with major clinical features within the MFS patients group; namely severity of the aortic root dilatation (HLA-DRB1 and HLA-DRB5 genes; r = 0.56 for both; False Discovery Rate(FDR) = 0%), ocular lens dislocation (RAET1L, CCL19 and HLA-DQB2; Fold Change (FC) = 1.8; 1.4; 1.5, FDR = 0%) and specific skeletal features (HLA-DRB1, HLA-DRB5, GZMK; FC = 8.8, 7.1, 1.3; FDR = 0%). Patients with progressive aortic disease had higher levels of Macrophage Colony Stimulating Factor (M-CSF) in blood. When comparing MFS aortic root vessel wall with non-MFS aortic root, increased numbers of CD4+ T-cells were found in the media (p = 0.02) and increased number of CD8+ T-cells (p = 0.003) in the adventitia of the MFS patients. CONCLUSION/SIGNIFICANCE: In conclusion, our results imply a modifying role of inflammation in MFS. Inflammation might be a novel therapeutic target in these patients

    Identification of stable reference genes for quantitative PCR in koalas

    Get PDF
    To better understand host and immune response to diseases, gene expression studies require identification of reference genes with stable expression for accurate normalisation. This study describes the identification and testing of reference genes with stable expression profiles in koala lymph node tissues across two genetically distinct koala populations. From the 25 most stable genes identified in transcriptome analysis, 11 genes were selected for verification using reverse transcription quantitative PCR, in addition to the commonly used ACTB and GAPDH genes. The expression data were analysed using stable genes statistical software - geNorm, BestKeeper, NormFinder, the comparative ΔCt method and RefFinder. All 13 genes showed relative stability in expression in koala lymph node tissues, however Tmem97 and Hmg20a were identified as the most stable genes across the two koala populations

    An evaluation of potential reference genes for stability of expression in two salmonid cell lines after infection with either Piscirickettsia salmonis or IPNV

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the limited number of species specific antibodies against fish proteins, differential gene expression analyses are vital for the study of host immune responses. Quantitative real-time reverse transcription PCR (qRT-PCR) is one of the most powerful tools for this purpose. Nevertheless, the accuracy of the method will depend on the careful selection of genes whose expression are stable and can be used as internal controls for a particular experimental setting.</p> <p>Findings</p> <p>The expression stability of five commonly used housekeeping genes [beta-actin (<it>ACTB</it>), elongation factor 1-alpha (<it>EF1A</it>), ubiquitin (<it>UBQ</it>), glyceraldehyd-3-phosphate dehydrogenase (<it>GAPDH</it>) and tubulin alpha (<it>TUBA</it>)] were monitored in salmonid cell lines CHSE-214 and RTS11 after infection with two of the most fastidious fish pathogens, the facultative bacterium <it>Piscirickettsia salmonis </it>and the aquabirnavirus IPNV (Infectious Pancreatic Necrosis Virus). After geNorm analysis, <it>UBQ </it>and <it>EF1A </it>appeared as the most stable, although <it>EF1A </it>was slightly upregulated at late stages of <it>P. salmonis </it>infection in RTS11. <it>ACTB </it>instead, showed a good performance in each case, being always considered within the three most stable genes of the panel. In contrast, infection-dependent differential regulation of <it>GAPDH </it>and <it>TUBA </it>was also demonstrated.</p> <p>Conclusion</p> <p>Based on the data presented here with the cell culture models CHSE-214 and RTS11, we suggest the initial choice of <it>UBQ</it>, <it>ACTB </it>and <it>EF1A </it>as reference genes in qRT-PCR assays for studying the effect of <it>P. salmonis </it>and IPNV on the host immune response.</p

    Evaluation of Candidate Reference Genes for Gene Expression Normalization in Brassica juncea Using Real Time Quantitative RT-PCR

    Get PDF
    The real time quantitative reverse transcription PCR (qRT-PCR) is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes), ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes), in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization

    Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Housekeeping genes are routinely used as endogenous references to account for experimental differences in gene expression assays. However, recent reports show that they could be de-regulated in different diseases, model animals, or even under varied experimental conditions, which may lead to unreliable results and consequently misinterpretations. This study focused on the selection of suitable reference genes for quantitative PCR in human hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) with different clinical outcomes.</p> <p>Methods</p> <p>We evaluated 6 commonly used housekeeping genes' expression levels in 108 HBV-related HCCs' matched tumor and non-tomor tissue samples with different clinical outcomes and 26 normal liver specimens by real-time PCR. The expression stability of the 6 genes was compared using the software programs geNorm and NormFinder. To show the impact of reference genes on data analysis, we took PGK1 as a target gene normalized by each reference gene, and performed one-way ANOVA and the equivalence test.</p> <p>Results</p> <p>With the geNorm and NormFinder software programs, analysis of TBP and HPRT1 showed the best stability in all tissue samples, while 18s and ACTB were less stable. When 18s or ACTB was used for normalization, no significant difference of PGK1 expression (p > 0.05) was found among HCC tissues with and without metastasis, and normal liver specimens; however, dramatically differences (p < 0.001) were observed when either TBP or the combination of TBP and HPRT1 were selected as reference genes.</p> <p>Conclusion</p> <p>TBP and HPRT1 are the most reliable reference genes for q-PCR normalization in HBV-related HCC specimens. However, the well-used ACTB and 18S are not suitable, which actually lead to the misinterpretation of the results in gene expression analysis.</p

    Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Housekeeping genes are routinely used as endogenous references to account for experimental differences in gene expression assays. However, recent reports show that they could be de-regulated in different diseases, model animals, or even under varied experimental conditions, which may lead to unreliable results and consequently misinterpretations. This study focused on the selection of suitable reference genes for quantitative PCR in human hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) with different clinical outcomes.</p> <p>Methods</p> <p>We evaluated 6 commonly used housekeeping genes' expression levels in 108 HBV-related HCCs' matched tumor and non-tomor tissue samples with different clinical outcomes and 26 normal liver specimens by real-time PCR. The expression stability of the 6 genes was compared using the software programs geNorm and NormFinder. To show the impact of reference genes on data analysis, we took PGK1 as a target gene normalized by each reference gene, and performed one-way ANOVA and the equivalence test.</p> <p>Results</p> <p>With the geNorm and NormFinder software programs, analysis of TBP and HPRT1 showed the best stability in all tissue samples, while 18s and ACTB were less stable. When 18s or ACTB was used for normalization, no significant difference of PGK1 expression (p > 0.05) was found among HCC tissues with and without metastasis, and normal liver specimens; however, dramatically differences (p < 0.001) were observed when either TBP or the combination of TBP and HPRT1 were selected as reference genes.</p> <p>Conclusion</p> <p>TBP and HPRT1 are the most reliable reference genes for q-PCR normalization in HBV-related HCC specimens. However, the well-used ACTB and 18S are not suitable, which actually lead to the misinterpretation of the results in gene expression analysis.</p

    Regulation of Apoptotic Mediators Reveals Dynamic Responses to Thermal Stress in the Reef Building Coral Acropora millepora

    Get PDF
    Background: Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts
    corecore