6 research outputs found

    Identification of particles with Lorentz factor up to 10410^{4} with Transition Radiation Detectors based on micro-strip silicon detectors

    Full text link
    This work is dedicated to the study of a technique for hadron identification in the TeV momentum range, based on the simultaneous measurement of the energies and of the emission angles of the Transition Radiation (TR) X-rays with respect to the radiating particles. A detector setup has been built and tested with particles in a wide range of Lorentz factors (from about 10310^3 to about 4Ă—1044 \times 10^4 crossing different types of radiators. The measured double-differential (in energy and angle) spectra of the TR photons are in a reasonably good agreement with TR simulation predictions.Comment: 31 pages, 12 figures, paper published on Nuclear Instruments & Methods

    Test beam studies of possibilities to separate particles with gamma factors above 10\u3csup\u3e3\u3c/sup\u3e with straw based Transition Radiation Detector

    Get PDF
    Measurements of hadron production in the TeV energy range are one of the tasks of the future studies at the Large Hadron Collider (LHC). The main goal of these experiments is a study of the fundamental QCD processes at this energy range, which is very important not only for probing of the Standard Model but also for ultrahigh-energy cosmic particle physics. One of the key elements of these experiments measurements are hadron identification. The only detector technology which has a potential ability to separate hadrons in this energy range is Transition Radiation Detector (TRD) technology. TRD prototype based on straw proportional chambers combined with a specially assembled radiator has been tested at the CERN SPS accelerator beam. The test beam results and comparison with detailed Monte Carlo simulations are presented here

    Measurement of the energy spectra and of the angular distribution of the Transition Radiation with a silicon strip detector

    Get PDF
    We plan to develop an advanced Transition Radiation Detector (TRD) for hadron identification in the TeV momentum range, based on the simultaneous measurement of the energies and of the emission angles of the Transition Radiation (TR) X-rays with respect to the radiating particles. To study the feasibility of this project, we have carried out a beam test campaign at the CERN SPS facility with 20 GeV/c electrons and muons up to 300 GeV/c. To detect the TR X-rays and the radiating particles, we used a 300 \u3bcm thick double-sided silicon strip detector, with a strip readout pitch of 50 \u3bcm. A 2 m long helium pipe was placed between the radiators and the detector, in order to ensure adequate separation between the TR X-rays and the radiating particle on the detector plane and to limit the X-ray absorption before the detector. We measured the double-differential (in energy and angle) spectra of the TR emitted by several radiators. The results are in good agreement with the predictions obtained from the TR theory

    First measurements of the spectral and angular distribution of transition radiation using a silicon pixel sensor on a Timepix3 chip

    Get PDF
    X-ray Transition radiation detectors (TRDs) are used for particle identification in both high energy physics and astroparticle physics. Particle identification is often achieved based on a threshold effect of the X-ray transition radiation (TR). In most of the detectors, TR emission starts at \u3b3 factors above 3c500 and reaches saturation at \u3b3 3c2 123 c510 3 . However, many experiments require particle identification up to \u3b3 3c10 5 , which is difficult to achieve with current detectors, based only on the measurement of the photon energy together with the particle ionization losses. Additional information on the Lorentz factor can be extracted from the angular distribution of TR photons. TRDs based on pixel detectors give a unique opportunity for precise measurements of spectral and angular distributions of TR at the same time. A 500 \u3bcm thick silicon sensor bump bonded to a Timepix3 chip was used in a test beam measurement at the CERN SPS. A beam telescope was employed to separate clusters produced by the primary beam particles from the potential TR clusters. Spectral and angular distributions of TR were studied with high precision for the first time using beams of pions, electrons and muons at different momenta. In this paper, the measurement and analysis techniques are described, and first results are presented
    corecore