370 research outputs found

    Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury

    Get PDF
    A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins

    Engineering Corynebacterium glutamicum for isobutanol production

    Get PDF
    The production of isobutanol in microorganisms has recently been achieved by harnessing the highly active 2-keto acid pathways. Since these 2-keto acids are precursors of amino acids, we aimed to construct an isobutanol production platform in Corynebacterium glutamicum, a well-known amino-acid-producing microorganism. Analysis of this host’s sensitivity to isobutanol toxicity revealed that C. glutamicum shows an increased tolerance to isobutanol relative to Escherichia coli. Overexpression of alsS of Bacillus subtilis, ilvC and ilvD of C. glutamicum, kivd of Lactococcus lactis, and a native alcohol dehydrogenase, adhA, led to the production of 2.6 g/L isobutanol and 0.4 g/L 3-methyl-1-butanol in 48 h. In addition, other higher chain alcohols such as 1-propanol, 2-methyl-1-butanol, 1-butanol, and 2-phenylethanol were also detected as byproducts. Using longer-term batch cultures, isobutanol titers reached 4.0 g/L after 96 h with wild-type C. glutamicum as a host. Upon the inactivation of several genes to direct more carbon through the isobutanol pathway, we increased production by ∼25% to 4.9 g/L isobutanol in a ∆pyc∆ldh background. These results show promise in engineering C. glutamicum for higher chain alcohol production using the 2-keto acid pathways

    Optimally splitting cases for training and testing high dimensional classifiers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We consider the problem of designing a study to develop a predictive classifier from high dimensional data. A common study design is to split the sample into a training set and an independent test set, where the former is used to develop the classifier and the latter to evaluate its performance. In this paper we address the question of what proportion of the samples should be devoted to the training set. How does this proportion impact the mean squared error (MSE) of the prediction accuracy estimate?</p> <p>Results</p> <p>We develop a non-parametric algorithm for determining an optimal splitting proportion that can be applied with a specific dataset and classifier algorithm. We also perform a broad simulation study for the purpose of better understanding the factors that determine the best split proportions and to evaluate commonly used splitting strategies (1/2 training or 2/3 training) under a wide variety of conditions. These methods are based on a decomposition of the MSE into three intuitive component parts.</p> <p>Conclusions</p> <p>By applying these approaches to a number of synthetic and real microarray datasets we show that for linear classifiers the optimal proportion depends on the overall number of samples available and the degree of differential expression between the classes. The optimal proportion was found to depend on the full dataset size (n) and classification accuracy - with higher accuracy and smaller <it>n </it>resulting in more assigned to the training set. The commonly used strategy of allocating 2/3rd of cases for training was close to optimal for reasonable sized datasets (<it>n </it>≥ 100) with strong signals (i.e. 85% or greater full dataset accuracy). In general, we recommend use of our nonparametric resampling approach for determing the optimal split. This approach can be applied to any dataset, using any predictor development method, to determine the best split.</p

    Using the information embedded in the testing sample to break the limits caused by the small sample size in microarray-based classification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray-based tumor classification is characterized by a very large number of features (genes) and small number of samples. In such cases, statistical techniques cannot determine which genes are correlated to each tumor type. A popular solution is the use of a subset of pre-specified genes. However, molecular variations are generally correlated to a large number of genes. A gene that is not correlated to some disease may, by combination with other genes, express itself.</p> <p>Results</p> <p>In this paper, we propose a new classiification strategy that can reduce the effect of over-fitting without the need to pre-select a small subset of genes. Our solution works by taking advantage of the information embedded in the testing samples. We note that a well-defined classification algorithm works best when the data is properly labeled. Hence, our classification algorithm will discriminate all samples best when the testing sample is assumed to belong to the correct class. We compare our solution with several well-known alternatives for tumor classification on a variety of publicly available data-sets. Our approach consistently leads to better classification results.</p> <p>Conclusion</p> <p>Studies indicate that thousands of samples may be required to extract useful statistical information from microarray data. Herein, it is shown that this problem can be circumvented by using the information embedded in the testing samples.</p

    Factors Influencing the Statistical Power of Complex Data Analysis Protocols for Molecular Signature Development from Microarray Data

    Get PDF
    Critical to the development of molecular signatures from microarray and other high-throughput data is testing the statistical significance of the produced signature in order to ensure its statistical reproducibility. While current best practices emphasize sufficiently powered univariate tests of differential expression, little is known about the factors that affect the statistical power of complex multivariate analysis protocols for high-dimensional molecular signature development.We show that choices of specific components of the analysis (i.e., error metric, classifier, error estimator and event balancing) have large and compounding effects on statistical power. The effects are demonstrated empirically by an analysis of 7 of the largest microarray cancer outcome prediction datasets and supplementary simulations, and by contrasting them to prior analyses of the same data.THE FINDINGS OF THE PRESENT STUDY HAVE TWO IMPORTANT PRACTICAL IMPLICATIONS: First, high-throughput studies by avoiding under-powered data analysis protocols, can achieve substantial economies in sample required to demonstrate statistical significance of predictive signal. Factors that affect power are identified and studied. Much less sample than previously thought may be sufficient for exploratory studies as long as these factors are taken into consideration when designing and executing the analysis. Second, previous highly-cited claims that microarray assays may not be able to predict disease outcomes better than chance are shown by our experiments to be due to under-powered data analysis combined with inappropriate statistical tests

    Identification of S100A8-correlated genes for prediction of disease progression in non-muscle invasive bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>S100 calcium binding protein A8 </it>(<it>S100A8</it>) has been implicated as a prognostic indicator in several types of cancer. However, previous studies are limited in their ability to predict the clinical behavior of the cancer. Here, we sought to identify a molecular signature based on <it>S100A8 </it>expression and to assess its usefulness as a prognostic indicator of disease progression in non-muscle invasive bladder cancer (NMIBC).</p> <p>Methods</p> <p>We used 103 primary NMIBC specimens for microarray gene expression profiling. The median follow-up period for all patients was 57.6 months (range: 3.2 to 137.0 months). Various statistical methods, including the leave-one-out cross validation method, were applied to identify a gene expression signature able to predict the likelihood of progression. The prognostic value of the gene expression signature was validated in an independent cohort (n = 302).</p> <p>Results</p> <p>Kaplan-Meier estimates revealed significant differences in disease progression associated with the expression signature of <it>S100A8</it>-correlated genes (log-rank test, <it>P </it>< 0.001). Multivariate Cox regression analysis revealed that the expression signature of <it>S100A8</it>-correlated genes was a strong predictor of disease progression (hazard ratio = 15.225, 95% confidence interval = 1.746 to 133.52, <it>P </it>= 0.014). We validated our results in an independent cohort and confirmed that this signature produced consistent prediction patterns. Finally, gene network analyses of the signature revealed that <it>S100A8</it>, <it>IL1B</it>, and <it>S100A9 </it>could be important mediators of the progression of NMIBC.</p> <p>Conclusions</p> <p>The prognostic molecular signature defined by <it>S100A8</it>-correlated genes represents a promising diagnostic tool for the identification of NMIBC patients that have a high risk of progression to muscle invasive bladder cancer.</p
    corecore