673 research outputs found

    Self-excited Oscillations of Charge-Spin Accumulation Due to Single-electron Tunneling

    Get PDF
    We theoretically study electronic transport through a layer of quantum dots connecting two metallic leads. By the inclusion of an inductor in series with the junction, we show that steady electronic transport in such a system may be unstable with respect to temporal oscillations caused by an interplay between the Coulomb blockade of tunneling and spin accumulation in the dots. When this instability occurs, a new stable regime is reached, where the average spin and charge in the dots oscillate periodically in time. The frequency of these oscillations is typically of the order of 1GHz for realistic values of the junction parameters

    Quantum Frequency Translation of Single-Photon States in Photonic Crystal Fiber

    Full text link
    We experimentally demonstrate frequency translation of a nonclassical optical field via the Bragg scattering four-wave mixing process in a photonic crystal fiber (PCF). The high nonlinearity and the ability to control dispersion in PCF enable efficient translation between photon channels within the visible to-near-infrared spectral range, useful in quantum networks. Heralded single photons at 683 nm were translated to 659 nm with an efficiency of 28.6±2.228.6 \pm 2.2 percent. Second-order correlation measurements on the 683-nm and 659-nm fields yielded g683(2)(0)=0.21±0.02g^{(2)}_{683}(0) = 0.21 \pm 0.02 and g659(2)(0)=0.19±0.05g^{(2)}_{659}(0) = 0.19 \pm 0.05 respectively, showing the nonclassical nature of both fields.Comment: 5 pages, 3 figure

    Revegetation of ski runs in Serbia: Case studies of Mts. Stara Planina and Divčibare

    Get PDF
    Revegetation is the most sustainable method of soil stabilization at ski runs. In order to establish a stable plant community, it is recommended to use native species. However, non-native species are most often used. In this paper the revegetation of ski runs at two ski resorts is investigated: Divčibare and Stara Planina. Seven species were used for the revegetation of the ski run at the Divčibare ski resort of which six species were native. Six species were used for the revegetation of the Stara Planina ski resort, of which two species were native. It was established that the plant species used in the seed mixtures were suitable for erosion control at the investigated ski resorts

    Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber

    Full text link
    We study theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in photonic crystal optical fiber. We show that it is possible to engineer two-photon states with specific spectral correlation (``entanglement'') properties suitable for quantum information processing applications. We focus on the case exhibiting no spectral correlations in the two-photon component of the state, which we call factorability, and which allows heralding of single-photon pure-state wave packets without the need for spectral post filtering. We show that spontaneous four wave mixing exhibits a remarkable flexibility, permitting a wider class of two-photon states, including ultra-broadband, highly-anticorrelated states.Comment: 17 pages, 7 figures, submitte

    Job quality and work engagement in the cruise industry

    Get PDF
    This study reviews the working conditions in the emerging cruise industry by using a holistic and systematic approach, as well as the effects on work engagement of two groups of clearly differentiated employees, namely, officers and nonofficer employees. Our sample comprised 353 cruise workers. Regression analysis confirmed the research purposes of this study, that is, seafarers work under poor conditions (especially among nonofficer employees) and that this precarity determines the engagement of both groups. This study contributes to identifying the job quality dimensions that needs an improvement by human resource managers of cruise line

    Neutrophilia and NETopathy as Key Pathologic Drivers of Progressive Lung Impairment in Patients With COVID-19

    Get PDF
    There is an urgent need for new therapeutic strategies to contain the spread of the novel coronavirus disease 2019 (COVID-19) and to curtail its most severe complications. Severely ill patients experience pathologic manifestations of acute respiratory distress syndrome (ARDS), and clinical reports demonstrate striking neutrophilia, elevated levels of multiple cytokines, and an exaggerated inflammatory response in fatal COVID-19. Mechanical respirator devices are the most widely applied therapy for ARDS in COVID-19, yet mechanical ventilation achieves strikingly poor survival. Many patients, who recover, experience impaired cognition or physical disability. In this review, we argue the need to develop therapies aimed at inhibiting neutrophil recruitment, activation, degranulation, and neutrophil extracellular trap (NET) release. Moreover, we suggest that currently available pharmacologic approaches should be tested as treatments for ARDS in COVID-19. In our view, targeting host-mediated immunopathology holds promise to alleviate progressive pathologic complications of ARDS and reduce morbidities and mortalities in severely ill patients with COVID-19

    Armed and accurate: engineering cytotoxic T cells for eradication of leukemia

    Get PDF
    Translational medicine depends on a rapid and efficient exchange of results between the bench and the bedside. A recent example from the field of cancer immunotherapy highlights the essential nature of this exchange. Methods have been developed to convert a patient's cytotoxic T cells into efficient and specific killers of cancer cells in patients with leukemia. By using recombinant DNA techniques, a lentiviral vector was constructed to express chimeric antigen receptors in cytotoxic T cells from patients with advanced chronic lymphocytic leukemia. The purpose of the chimeric receptors was to direct the cytotoxic T cell activity against cells causing the cancer. The effect of infusing the engineered T cells back into the cancer patients was tested in a Phase I trial at the University of Pennsylvania, and the initial results were described in two articles from the research team of Dr. Carl June. The remarkable success of this trial should energize further applications of biotechnology in the development of new cancer immunotherapies

    Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

    Full text link
    All-optical signal processing is envisioned as an approach to dramatically decrease power consumption and speed up performance of next-generation optical telecommunications networks. Nonlinear optical effects, such as four-wave mixing (FWM) and parametric gain, have long been explored to realize all-optical functions in glass fibers. An alternative approach is to employ nanoscale engineering of silicon waveguides to enhance the optical nonlinearities by up to five orders of magnitude, enabling integrated chip-scale all-optical signal processing. Previously, strong two-photon absorption (TPA) of the telecom-band pump has been a fundamental and unavoidable obstacle, limiting parametric gain to values on the order of a few dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic TPA-related absorption vanishes. This gain is high enough to compensate all insertion losses, resulting in 13 dB net off-chip amplification. Furthermore, dispersion engineering dramatically increases the gain bandwidth to more than 220 nm, all realized using an ultra-compact 4 mm silicon chip. Beyond its significant relevance to all-optical signal processing, the broadband parametric gain also facilitates the simultaneous generation of multiple on-chip mid-IR sources through cascaded FWM, covering a 500 nm spectral range. Together, these results provide a foundation for the construction of silicon-based room-temperature mid-IR light sources including tunable chip-scale parametric oscillators, optical frequency combs, and supercontinuum generators

    Dzyaloshinskii-Moriya Interaction and Spiral Order in Spin-orbit Coupled Optical Lattices

    Full text link
    We show that the recent experimental realization of spin-orbit coupling in ultracold atomic gases can be used to study different types of spin spiral order and resulting multiferroic effects. Spin-orbit coupling in optical lattices can give rise to the Dzyaloshinskii-Moriya (DM) spin interaction which is essential for spin spiral order. By taking into account spin-orbit coupling and an external Zeeman field, we derive an effective spin model in the Mott insulator regime at half filling and demonstrate that the DM interaction in optical lattices can be made extremely strong with realistic experimental parameters. The rich finite temperature phase diagrams of the effective spin models for fermions and bosons are obtained via classical Monte Carlo simulations.Comment: 7 pages, 5 figure
    corecore