169 research outputs found

    DIURESIS (FUNCTIONAL) ECHOGRAPHY AND ITS SIGNIFICANCE FOR THE DIAGNOSIS OF CONGENITAL URINARY TRACT ANOMALIES IN CHILDHOOD

    Get PDF
    No abstrac

    LIPID METABOLISM IN DIABETICS WITH AND WITHOUT BLOOD PRESSURE INCREASE

    Get PDF
    No abstrac

    LIPID METABOLISM IN DIABETIC PATIENTS WITH AND WITHOUT BLOOD PRESSURE INCREASE

    Get PDF
    No abstrac

    A leader election algorithm for dynamic networks with causal clocks

    Get PDF
    An algorithm for electing a leader in an asynchronous network with dynamically changing communication topology is presented. The algorithm ensures that, no matter what pattern of topology changes occurs, if topology changes cease, then eventually every connected component contains a unique leader. The algorithm combines ideas from the Temporally Ordered Routing Algorithm for mobile ad hoc networks (Park and Corson in Proceedings of the 16th IEEE Conference on Computer Communications (INFOCOM), pp. 1405–1413 (1997) with a wave algorithm (Tel in Introduction to distributed algorithms, 2nd edn. Cambridge University Press, Cambridge, MA, 2000), all within the framework of a height-based mechanism for reversing the logical direction of communication topology links (Gafni and Bertsekas in IEEE Trans Commun C–29(1), 11–18 1981). Moreover, a generic representation of time is used, which can be implemented using totally-ordered values that preserve the causality of events, such as logical clocks and perfect clocks. A correctness proof for the algorithm is provided, and it is ensured that in certain well-behaved situations, a new leader is not elected unnecessarily, that is, the algorithm satisfies a stability condition.National Science Foundation (U.S.) (0500265)Texas Higher Education Coordinating Board (ARP-00512-0007-2006)Texas Higher Education Coordinating Board (ARP 000512-0130-2007)National Science Foundation (U.S.) (IIS-0712911)National Science Foundation (U.S.) (CNS-0540631)National Science Foundation (U.S.) (Research Experience for Undergraduates (Program) (0649233)

    Brain age estimation at tract group level and its association with daily life measures, cardiac risk factors and genetic variants

    Get PDF
    Brain age can be estimated using different Magnetic Resonance Imaging (MRI) modalities including diffusion MRI. Recent studies demonstrated that white matter (WM) tracts that share the same function might experience similar alterations. Therefore, in this work, we sought to investigate such issue focusing on five WM bundles holding that feature that is Association, Brainstem, Commissural, Limbic and Projection fibers, respectively. For each tract group, we estimated brain age for 15,335 healthy participants from United Kingdom Biobank relying on diffusion MRI data derived endophenotypes, Bayesian ridge regression modeling and 10 fold-cross validation. Furthermore, we estimated brain age for an Ensemble model that gathers all the considered WM bundles. Association analysis was subsequently performed between the estimated brain age delta as resulting from the six models, that is for each tract group as well as for the Ensemble model, and 38 daily life style measures, 14 cardiac risk factors and cardiovascular magnetic resonance imaging features and genetic variants. The Ensemble model that used all tracts from all fiber groups (FG) performed better than other models to estimate brain age. Limbic tracts based model reached the highest accuracy with a Mean Absolute Error (MAE) of 5.08, followed by the Commissural ([Formula: see text]), Association ([Formula: see text]), and Projection ([Formula: see text]) ones. The Brainstem tracts based model was the less accurate achieving a MAE of 5.86. Accordingly, our study suggests that the Limbic tracts experience less brain aging or allows for more accurate estimates compared to other tract groups. Moreover, the results suggest that Limbic tract leads to the largest number of significant associations with daily lifestyle factors than the other tract groups. Lastly, two SNPs were significantly (p value [Formula: see text]) associated with brain age delta in the Projection fibers. Those SNPs are mapped to HIST1H1A and SLC17A3 genes

    Brain age estimation at tract group level and its association with daily life measures, cardiac risk factors and genetic variants

    Get PDF
    Abstract Brain age can be estimated using different Magnetic Resonance Imaging (MRI) modalities including diffusion MRI. Recent studies demonstrated that white matter (WM) tracts that share the same function might experience similar alterations. Therefore, in this work, we sought to investigate such issue focusing on five WM bundles holding that feature that is Association, Brainstem, Commissural, Limbic and Projection fibers, respectively. For each tract group, we estimated brain age for 15,335 healthy participants from United Kingdom Biobank relying on diffusion MRI data derived endophenotypes, Bayesian ridge regression modeling and 10 fold-cross validation. Furthermore, we estimated brain age for an Ensemble model that gathers all the considered WM bundles. Association analysis was subsequently performed between the estimated brain age delta as resulting from the six models, that is for each tract group as well as for the Ensemble model, and 38 daily life style measures, 14 cardiac risk factors and cardiovascular magnetic resonance imaging features and genetic variants. The Ensemble model that used all tracts from all fiber groups (FG) performed better than other models to estimate brain age. Limbic tracts based model reached the highest accuracy with a Mean Absolute Error (MAE) of 5.08, followed by the Commissural ( MAE=5.23\hbox {MAE}=5.23 MAE = 5.23 ), Association ( MAE=5.24\hbox {MAE}=5.24 MAE = 5.24 ), and Projection ( MAE=5.28\hbox {MAE}=5.28 MAE = 5.28 ) ones. The Brainstem tracts based model was the less accurate achieving a MAE of 5.86. Accordingly, our study suggests that the Limbic tracts experience less brain aging or allows for more accurate estimates compared to other tract groups. Moreover, the results suggest that Limbic tract leads to the largest number of significant associations with daily lifestyle factors than the other tract groups. Lastly, two SNPs were significantly (p value <5E−8< 5\hbox {E}{-}8 < 5 E - 8 ) associated with brain age delta in the Projection fibers. Those SNPs are mapped to HIST1H1A and SLC17A3 genes

    Primary Volatile Abundances in Comets from Infrared Spectroscopy: Implications for Reactions on Grain Surfaces in the Interstellar/Nebular Environment

    Get PDF
    Comets retain relatively primitive icy material remaining from the epoch of Solar System formation, however the extent to which they are modified from their initial state remains a key question in cometary science. High-resolution lR spectroscopy has emerged as a powerful tool for measuring vibrational emissions from primary volatiles (i.e., those contained in the nuclei of comets). With modern instrumentation, most notably NIRSPEC at the Keck II 10-m telescope, we can quantify species of astrobiological importance (e.g., H20, C2H2, CH4, C2H6, CO, H2CO, CH30H, HCN, NH3). In space environments, compounds of keen interest to astrobiology could originate from HCN and NH3 (leading to amino acids), H2CO (leading to sugars), or C2H6 and CH4 (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules (and their variability among comets) is a feasible task that contributes to understanding their delivery to Earth's early biosphere and to the synthesis of more complex pre biotic compounds. Over 20 comets have now been measured with IR spectroscopy, and this sample reveals significant diversity in primary volatile compositions. From this, a taxonomic classification scheme is emerging, presumably reflecting the diverse conditions experienced by pre-cometary grains in interstellar and subsequent nebular environs. The importance of H-atom addition to C2H2 on the surfaces of interstellar grains to produce C2H6 was validated by the discovery of abundant ethane in comet C/1996 B2 (Hyakutake) with C2H6/CH4 well above that achievable by gas-phase chemistry , and then in irradiation experiments on laboratory ices at 10 - 50 K. The large abundance ratios C2H6/CH4 observed universally in comets establish H-atom addition as an important and likely ubiquitous process, and comparing C2H6/C2H2 among comets can provide information on its efficiency. The IR is uniquely capable since symmetric hydrocarbons (e.g., C2H2, CH4, C2H6) have no electric dipole moment and thus no allowed pure rotational transitions. CO should also be hydrogenated on grain surfaces. Irradiation experiments on interstellar ice analogs show this to require very low temperatures, the resulting yields of H2CO and CH30H being highly dependent on temperature in the range approx 10 - 25 K. The relative abundances of these chemically-related molecules in comets provide one measure of the efficiency of H-atom addition to CO Oxidation of CO is also important on grain mantles, as evidenced by the widespread presence of C02 ice towards interstellar sources observed with ISO and in a survey of 17 comets observed with AKARI. H-atom addition to C2H2 produces the vinyl radical, and through subsequent oxidation1reduction reactions can lead to vinyl alcohol, acetaldehyde, and ethanol This may have implications for interpreting observed abundance ratios CO/C2H2. We will discuss possible implications regarding formation conditions in the context of measured primary volatile compositions, emphasizing recently observed comets and published results. These are continually providing new insights regarding our taxonomic scheme and also delivery of pre-biological material to the young Earth

    A Comparison of Oxidized Carbon Abundances among Comets

    Get PDF
    Comets contain relatively well preserved icy material remaining from the epoch of Solar System formation, however the extent to which these ices are modified from their initial state remains a fundamental question in cometary science. As a comet approaches the Sun, sublimation of the ices contained in its nucleus (termed " native ices") releases parent volatiles into the coma, where they can be measured spectroscopically. One means of assessing the degree to which interstellar ices were processed prior to their incorporation into cometary nuclei is to measure the relative abundances of chemically-related parent volatiles. For example, formation of C2H6 by hydrogen atom addition (e.g., to C2H2) on surfaces of ice-mantled grains was proposed to explain the high C2H6 to CH4 abundance observed in C/1996 B2 (Hyakutake) [1]. The large C2H6/CH4 abundance ratios measured universally in comets, compared with those predicted by gas phase production of C2H6, establishes H-atom addition as an important and likely ubiquitous process. CO should also be hydrogenated on grain surfaces. Laboratory irradiation experiments on interstellar ice analogs indicate this to require very low temperatures (T approx. 10-25 K), the resulting yields of H2CO and CH3OH being highly dependent both on hydrogen density (i.e., fluence) and on temperature ([2],[3]). This relatively narrow range in temperature reflects a lack of mobility below 8-10 K on the one hand, and reduced sticking times for H-atoms as grain surfaces are warmed above 20 K on the other. The relative abundances of these three chemically-related molecules in comets provides one measure of the efficiency of H-atom addition to CO on pre-cometary grains (Fig. 1)

    The Volatile Fraction of Comets as Quantified at Infrared Wavelengths - An Emerging Taxonomy and Implications for Natal Heritage

    Get PDF
    It is relatively easy to identify the reservoir from which a given comet was ejected. But dynamical models demonstrate that the main cometary reservoirs (Kuiper Belt, Oort Cloud) each contain icy bodies that formed in a range of environments in the protoplanetary disk, and the Oort Cloud may even contain bodies that formed in disks of sibling stars in the Sun s birth cluster. The cometary nucleus contains clues to the formative region(s) of its individual components. The composition of ices and rocky grains reflect a range of processes experienced by material while on the journey from the natal interstellar cloud core to the cometary nucleus. For that reason, emphasis is placed on classifying comets according to their native ices and dust (rather than orbital dynamics). Mumma & Charnley [1] reviewed the current status of taxonomies for comets and relation to their natal heritage
    • …
    corecore