1,660 research outputs found

    Monitoring cardiovascular function in the primate under prolonged weightlessness

    Get PDF
    Monitoring cardiovascular function in primates under prolonged weightlessnes

    Suppression of electron scattering resonances in graphene by quantum dots

    Full text link
    Transmission of low-energetic electrons through two-dimensional materials leads to unique scattering resonances. These resonances contribute to photoemission from occupied bands where they appear as strongly dispersive features of suppressed photoelectron intensity. Using angle-resolved photoemission we have systematically studied scattering resonances in epitaxial graphene grown on the chemically differing substrates Ir(111), Bi/Ir, Ni(111) as well as in graphene/Ir(111) nanopatterned with a superlattice of uniform Ir quantum dots. While the strength of the chemical interaction with the substrate has almost no effect on the dispersion of the scattering resonances, their energy can be controlled by the magnitude of charge transfer from/to graphene. At the same time, a superlattice of small quantum dots deposited on graphene eliminates the resonances completely. We ascribe this effect to a nanodot-induced buckling of graphene and its local rehybridization from sp2^{2} to sp3^{3} towards a three-dimensional structure. Our results suggest nanopatterning as a prospective tool for tuning optoelectronic properties of two-dimensional materials with graphene-like structure.Comment: The following article has been submitted to Applied Physics Letters. If it is published, it will be found online at http://apl.aip.or

    Rashba splitting of 100 meV in Au-intercalated graphene on SiC

    Full text link
    Intercalation of Au can produce giant Rashba-type spin-orbit splittings in graphene but this has not yet been achieved on a semiconductor substrate. For graphene/SiC(0001), Au intercalation yields two phases with different doping. Here, we report the preparation of an almost pure p-type graphene phase after Au intercalation. We observe a 100 meV Rashba-type spin-orbit splitting at 0.9 eV binding energy. We show that this giant splitting is due to hybridization and much more limited in energy and momentum space than for Au-intercalated graphene on Ni

    Exploratory studies of contact angle hysteresis, wetting of solidified rare gases and surface properties of mercury Final report

    Get PDF
    Contact angle hysteresis, wetting of solidified rare gases, and surface properties of mercur

    Explicit Lie-Poisson integration and the Euler equations

    Full text link
    We give a wide class of Lie-Poisson systems for which explicit, Lie-Poisson integrators, preserving all Casimirs, can be constructed. The integrators are extremely simple. Examples are the rigid body, a moment truncation, and a new, fast algorithm for the sine-bracket truncation of the 2D Euler equations.Comment: 7 pages, compile with AMSTEX; 2 figures available from autho

    Thermostability in endoglucanases is fold-specific

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endoglucanases are usually considered to be synergistically involved in the initial stages of cellulose breakdown-an essential step in the bioprocessing of lignocellulosic plant materials into bioethanol. Despite their economic importance, we currently lack a basic understanding of how some endoglucanases can sustain their ability to function at elevated temperatures required for bioprocessing, while others cannot. In this study, we present a detailed comparative analysis of both thermophilic and mesophilic endoglucanases in order to gain insights into origins of thermostability. We analyzed the sequences and structures for sets of endoglucanase proteins drawn from the Carbohydrate-Active enZymes (CAZy) database.</p> <p>Results</p> <p>Our results demonstrate that thermophilic endoglucanases and their mesophilic counterparts differ significantly in their amino acid compositions. Strikingly, these compositional differences are specific to protein folds and enzyme families, and lead to differences in intramolecular interactions in a fold-dependent fashion.</p> <p>Conclusions</p> <p>Here, we provide fold-specific guidelines to control thermostability in endoglucanases that will aid in making production of biofuels from plant biomass more efficient.</p

    Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt

    Get PDF
    We report on a quantitative investigation of the spin-dependent quasiparticle lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by means of spin and angle-resolved photoemission spectroscopy. The experimental spectra are compared in detail to state-of-the-art many-body calculations within the dynamical mean field theory and the three-body scattering approximation, including a full calculation of the one-step photoemission process. From this comparison we conclude that although strong local many-body Coulomb interactions are of major importance for the qualitative description of correlation effects in Co, more sophisticated many-body calculations are needed in order to improve the quantitative agreement between theory and experiment, in particular concerning the linewidths. The quality of the overall agreement obtained for Co indicates that the effect of non-local correlations becomes weaker with increasing atomic number

    Probing two topological surface bands of Sb2Te3 by spin-polarized photoemission spectroscopy

    Get PDF
    Using high resolution spin- and angle-resolved photoemission spectroscopy, we map the electronic structure and spin texture of the surface states of the topological insulator Sb2Te3. In combination with density functional calculations (DFT), we directly show that Sb2Te3 exhibits a partially occupied, single spin-Dirac cone around the Fermi energy, which is topologically protected. DFT obtains a spin polarization of the occupied Dirac cone states of 80-90%, which is in reasonable agreement with the experimental data after careful background subtraction. Furthermore, we observe a strongly spin-orbit split surface band at lower energy. This state is found at 0.8eV below the Fermi level at the gamma-point, disperses upwards, and disappears at about 0.4eV below the Fermi level into two different bulk bands. Along the gamma-K direction, the band is located within a spin-orbit gap. According to an argument given by Pendry and Gurman in 1975, such a gap must contain a surface state, if it is located away from the high symmetry points of the Brillouin zone. Thus, the novel spin-split state is protected by symmetry, too.Comment: 8 pages, 10 figure

    Topological surface state under graphene for two-dimensional spintronics in air

    Get PDF
    Spin currents which allow for a dissipationless transport of information can be generated by electric fields in semiconductor heterostructures in the presence of a Rashba-type spin-orbit coupling. The largest Rashba effects occur for electronic surface states of metals but these cannot exist but under ultrahigh vacuum conditions. Here, we reveal a giant Rashba effect ({\alpha}_R ~ 1.5E-10 eVm) on a surface state of Ir(111). We demonstrate that its spin splitting and spin polarization remain unaffected when Ir is covered with graphene. The graphene protection is, in turn, sufficient for the spin-split surface state to survive in ambient atmosphere. We discuss this result along with evidences for a topological protection of the surface state.Comment: includes supplementary informatio

    Exact Cover with light

    Full text link
    We suggest a new optical solution for solving the YES/NO version of the Exact Cover problem by using the massive parallelism of light. The idea is to build an optical device which can generate all possible solutions of the problem and then to pick the correct one. In our case the device has a graph-like representation and the light is traversing it by following the routes given by the connections between nodes. The nodes are connected by arcs in a special way which lets us to generate all possible covers (exact or not) of the given set. For selecting the correct solution we assign to each item, from the set to be covered, a special integer number. These numbers will actually represent delays induced to light when it passes through arcs. The solution is represented as a subray arriving at a certain moment in the destination node. This will tell us if an exact cover does exist or not.Comment: 20 pages, 4 figures, New Generation Computing, accepted, 200
    corecore