580 research outputs found

    Fluctuations in the level density of a Fermi gas

    Get PDF
    We present a theory that accurately describes the counting of excited states of a noninteracting fermionic gas. At high excitation energies the results reproduce Bethe's theory. At low energies oscillatory corrections to the many--body density of states, related to shell effects, are obtained. The fluctuations depend non-trivially on energy and particle number. Universality and connections with Poisson statistics and random matrix theory are established for regular and chaotic single--particle motion.Comment: 4 pages, 1 figur

    Rademacher's infinite partial fraction conjecture is (almost certainly) false

    Full text link
    In his book \emph{Topics in Analytic Number Theory}, Hans Rademacher conjectured that the limits of certain sequences of coefficients that arise in the ordinary partial fraction decomposition of the generating function for partitions of integers into at most NN parts exist and equal particular values that he specified. Despite being open for nearly four decades, little progress has been made toward proving or disproving the conjecture, perhaps in part due to the difficulty in actually computing the coefficients in question. In this paper, we provide a fast algorithm for calculating the Rademacher coefficients, a large amount of data, direct formulas for certain collections of Rademacher coefficients, and overwhelming evidence against the truth of the conjecture. While the limits of the sequences of Rademacher coefficients do not exist (the sequences oscillate and attain arbitrarily large positive and negative values), the sequences do get very close to Rademacher's conjectured limits for certain (predictable) indices in the sequences

    Level density of a Fermi gas: average growth and fluctuations

    Full text link
    We compute the level density of a two--component Fermi gas as a function of the number of particles, angular momentum and excitation energy. The result includes smooth low--energy corrections to the leading Bethe term (connected to a generalization of the partition problem and Hardy--Ramanujan formula) plus oscillatory corrections that describe shell effects. When applied to nuclear level densities, the theory provides a unified formulation valid from low--lying states up to levels entering the continuum. The comparison with experimental data from neutron resonances gives excellent results.Comment: 4 pages, 1 figur

    Riemann solvers and undercompressive shocks of convex FPU chains

    Full text link
    We consider FPU-type atomic chains with general convex potentials. The naive continuum limit in the hyperbolic space-time scaling is the p-system of mass and momentum conservation. We systematically compare Riemann solutions to the p-system with numerical solutions to discrete Riemann problems in FPU chains, and argue that the latter can be described by modified p-system Riemann solvers. We allow the flux to have a turning point, and observe a third type of elementary wave (conservative shocks) in the atomistic simulations. These waves are heteroclinic travelling waves and correspond to non-classical, undercompressive shocks of the p-system. We analyse such shocks for fluxes with one or more turning points. Depending on the convexity properties of the flux we propose FPU-Riemann solvers. Our numerical simulations confirm that Lax-shocks are replaced by so called dispersive shocks. For convex-concave flux we provide numerical evidence that convex FPU chains follow the p-system in generating conservative shocks that are supersonic. For concave-convex flux, however, the conservative shocks of the p-system are subsonic and do not appear in FPU-Riemann solutions

    An Exact Black Hole Entropy Bound

    Get PDF
    We show that a Rademacher expansion can be used to establish an exact bound for the entropy of black holes within a conformal field theory framework. This convergent expansion includes all subleading corrections to the Bekenstein-Hawking term.Comment: 6 pages, Latex, v2 minor re-wording, additional reference, to appear in Phyical Review D (title changed in journal

    Finsler Conformal Lichnerowicz-Obata conjecture

    Get PDF
    We prove the Finsler analog of the conformal Lichnerowicz-Obata conjecture showing that a complete and essential conformal vector field on a non-Riemannian Finsler manifold is a homothetic vector field of a Minkowski metric.Comment: 13 pages, 2 figures; the new version has only minor changes with respect to v1, and is the version that will be published in Annales de L'Institut Fourie

    Cardy and Kerr

    Get PDF
    The Kerr/CFT correspondence employs the Cardy formula to compute the entropy of the left moving CFT states. This computation, which correctly reproduces the Bekenstein--Hawking entropy of the four-dimensional extremal Kerr black hole, is performed in a regime where the temperature is of order unity rather than in a high-temperature regime. We show that the comparison of the entropy of the extreme Kerr black hole and the entropy in the CFT can be understood within the Cardy regime by considering a D0-D6 system with the same entropic properties.Comment: 20 pages; LaTeX; JHEP format; v.2 references added, v.3 Section 4 adde

    On the energy functional on Finsler manifolds and applications to stationary spacetimes

    Full text link
    In this paper we first study some global properties of the energy functional on a non-reversible Finsler manifold. In particular we present a fully detailed proof of the Palais--Smale condition under the completeness of the Finsler metric. Moreover we define a Finsler metric of Randers type, which we call Fermat metric, associated to a conformally standard stationary spacetime. We shall study the influence of the Fermat metric on the causal properties of the spacetime, mainly the global hyperbolicity. Moreover we study the relations between the energy functional of the Fermat metric and the Fermat principle for the light rays in the spacetime. This allows us to obtain existence and multiplicity results for light rays, using the Finsler theory. Finally the case of timelike geodesics with fixed energy is considered.Comment: 23 pages, AMSLaTeX. v4 matches the published versio
    corecore