12 research outputs found

    Dexamethasone therapy versus surgery for chronic subdural haematoma (DECSA trial):study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Chronic subdural haematoma (CSDH) is a common neurological disease with a rapidly rising incidence due to increasing age and widespread use of anticoagulants. Surgical intervention by burr-hole craniotomy (BHC) is the current standard practice for symptomatic patients, but associated with complications, a recurrence rate of up to 30% and increased mortality. Dexamethasone (DXM) therapy is, therefore, used as a non-surgical alternative but considered to achieve a lower success rate. Furthermore, the benefit of DXM therapy appears much more deliberate than the immediate relief from BHC. Lack of evidence and clinical equipoise among caregivers prompts the need for a head-to-head randomised controlled trial. The objective of this study is to compare the effect of primary DXM therapy versus primary BHC on functional outcome and cost-effectiveness in symptomatic patients with CSDH. METHODS/DESIGN: This study is a prospective, multicentre, randomised controlled trial (RCT). Consecutive patients with a CSDH with a Markwalder Grading Scale (MGS) grade 1 to 3 will be randomised to treatment with DXM or BHC. The DXM treatment scheme will be 16 mg DXM per day (8 mg twice daily, days 1 to 4) which is then halved every 3 days until a dosage of 0.5 mg a day on day 19 and stopped on day 20. If the treatment response is insufficient (i.e. persistent or progressive symptomatology due to insufficient haematoma resolution), additional surgery can be performed. The primary outcomes are the functional outcome by means of the modified Rankin Scale (mRS) score at 3 months and cost-effectiveness at 12 months. Secondary outcomes are quality of life at 3 and 12 months using the Short Form Health Survey (SF-36) and Quality of Life after Brain Injury Overall Scale (QOLIBRI), haematoma thickness after 2 weeks on follow-up computed tomography (CT), haematoma recurrence during the first 12 months, complications and drug-related adverse events, failure of therapy within 12 months after randomisation and requiring intervention, mortality during the first 3 and 12 months, duration of hospital stay and overall healthcare and productivity costs. To test non-inferiority of DXM therapy compared to BHC, 210 patients in each treatment arm are required (assumed adjusted common odds ratio DXM compared to BHC 1.15, limit for inferiority < 0.9). The aim is to include a total of 420 patients in 3 years with an enrolment rate of 60%. DISCUSSION: The present study should demonstrate whether treatment with DXM is as effective as BHC on functional outcome, at lower costs. TRIAL REGISTRATION: EUCTR 2015-001563-39 . Date of registration: 29 March 2015

    Dexamethasone therapy versus surgery for chronic subdural haematoma (DECSA trial): study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Chronic subdural haematoma (CSDH) is a common neurological disease with a rapidly rising incidence due to increasing age and widespread use of anticoagulants. Surgical intervention by burr-hole craniotomy (BHC) is the current standard practice for symptomatic patients, but associated with complications, a recurrence rate of up to 30% and increased mortality. Dexamethasone (DXM) therapy is, therefore, used as a non-surgical alternative but considered to achieve a lower success rate. Furthermore, the benefit of DXM therapy appears much more deliberate than the immediate relief from BHC. Lack of evidence and clinical equipoise among caregivers prompts the need for a head-to-head randomised controlled trial. The objective of this study is to compare the effect of primary DXM therapy versus primary BHC on functional outcome and cost-effectiveness in symptomatic patients with CSDH.METHODS/DESIGN: This study is a prospective, multicentre, randomised controlled trial (RCT). Consecutive patients with a CSDH with a Markwalder Grading Scale (MGS) grade 1 to 3 will be randomised to treatment with DXM or BHC. The DXM treatment scheme will be 16 mg DXM per day (8 mg twice daily, days 1 to 4) which is then halved every 3 days until a dosage of 0.5 mg a day on day 19 and stopped on day 20. If the treatment response is insufficient (i.e. persistent or progressive symptomatology due to insufficient haematoma resolution), additional surgery can be performed. The primary outcomes are the functional outcome by means of the modified Rankin Scale (mRS) score at 3 months and cost-effectiveness at 12 months. Secondary outcomes are quality of life at 3 and 12 months using the Short Form Health Survey (SF-36) and Quality of Life after Brain Injury Overall Scale (QOLIBRI), haematoma thickness after 2 weeks on follow-up computed tomography (CT), haematoma recurrence during the first 12 months, complications and drug-related adverse events, failure of therapy within 12 months after randomisation and requiring intervention, mortality during the first 3 and 12 months, duration of hospital stay and overall healthcare and productivity costs. To test non-inferiority of DXM therapy compared to BHC, 210 patients in each treatment arm are required (assumed adjusted common odds ratio DXM compared to BHC 1.15, limit for inferiority < 0.9). The aim is to include a total of 420 patients in 3 years with an enrolment rate of 60%.DISCUSSION: The present study should demonstrate whether treatment with DXM is as effective as BHC on functional outcome, at lower costs.TRIAL REGISTRATION: EUCTR 2015-001563-39 . Date of registration: 29 March 2015

    Epidermoid of the lateral ventricle: evaluation with diffusion-weighted and diffusion tensor imaging

    No full text
    We report of a large epidermoid tumor of the lateral ventricle in a 67-year-old man. Conventional imaging (CT, T1/T2, MRI) could not differentiate the tumor from the surrounding cerebral spinal fluid (CSF). On diffusion-weighted and diffusion anisotropy images the tumor was clearly seen as a hyperintense mass surrounded by hypointense CSF, highly suspected for epidermoid. Diffusion-tensor imaging (DTI) accentuated its lobulated structure and clearly demonstrated its relationship to neighboring white matter tracts. We suggest that in case of the suspicion of a space-occupying lesion in CSF containing areas, not distinguishable from CSF by conventional MR imaging, diffusion-weighted and diffusion-tensor MR imaging should be adde

    Ultra-early tranexamic acid after subarachnoid haemorrhage (ULTRA): a randomised controlled trial

    No full text
    BACKGROUND: In patients with aneurysmal subarachnoid haemorrhage, short-term antifibrinolytic therapy with tranexamic acid has been shown to reduce the risk of rebleeding. However, whether this treatment improves clinical outcome is unclear. We investigated whether ultra-early, short-term treatment with tranexamic acid improves clinical outcome at 6 months. METHODS: In this multicentre prospective, randomised, controlled, open-label trial with masked outcome assessment, adult patients with spontaneous CT-proven subarachnoid haemorrhage in eight treatment centres and 16 referring hospitals in the Netherlands were randomly assigned to treatment with tranexamic acid in addition to care as usual (tranexamic acid group) or care as usual only (control group). Tranexamic acid was started immediately after diagnosis in the presenting hospital (1 g bolus, followed by continuous infusion of 1 g every 8 h, terminated immediately before aneurysm treatment, or 24 h after start of the medication, whichever came first). The primary endpoint was clinical outcome at 6 months, assessed by the modified Rankin Scale, dichotomised into a good (0-3) or poor (4-6) clinical outcome. Both primary and safety analyses were according to intention to treat. This trial is registered at ClinicalTrials.gov, NCT02684812. FINDINGS: Between July 24, 2013, and July 29, 2019, we enrolled 955 patients; 480 patients were randomly assigned to tranexamic acid and 475 patients to the control group. In the intention-to-treat analysis, good clinical outcome was observed in 287 (60%) of 475 patients in the tranexamic acid group, and 300 (64%) of 470 patients in the control group (treatment centre adjusted odds ratio 0·86, 95% CI 0·66-1·12). Rebleeding after randomisation and before aneurysm treatment occurred in 49 (10%) patients in the tranexamic acid and in 66 (14%) patients in the control group (odds ratio 0·71, 95% CI 0·48-1·04). Other serious adverse events were comparable between groups. INTERPRETATION: In patients with CT-proven subarachnoid haemorrhage, presumably caused by a ruptured aneurysm, ultra-early, short-term tranexamic acid treatment did not improve clinical outcome at 6 months, as measured by the modified Rankin Scale. FUNDING: Fonds NutsOhra

    Tranexamic Acid After Aneurysmal Subarachnoid Hemorrhage: Post-Hoc Analysis of the ULTRA Trial

    No full text
    Background and ObjectivesThe ULTRA trial showed that ultra-early and short-term tranexamic acid treatment after subarachnoid hemorrhage did not improve clinical outcome at 6 months. An expected proportion of the included patients experienced nonaneurysmal subarachnoid hemorrhage. In this post hoc study, we will investigate whether ultra-early and short-term tranexamic acid treatment in patients with aneurysmal subarachnoid hemorrhage improves clinical outcome at 6 months.MethodsThe ULTRA trial is a multicenter, prospective, randomized, controlled, open-label trial with blinded outcome assessment, conducted between July 24, 2013, and January 20, 2020. After confirmation of subarachnoid hemorrhage on noncontrast CT, patients were allocated to either ultra-early and short-term tranexamic acid treatment with usual care or usual care only. In this post hoc analysis, we included all ULTRA participants with a confirmed aneurysm on CT angiography and/or digital subtraction angiography. The primary endpoint was clinical outcome at 6 months, assessed by the modified Rankin scale (mRS), dichotomized into good (0-3) and poor (4-6) outcomes.ResultsOf the 813 ULTRA trial patients who experienced an aneurysmal subarachnoid hemorrhage, 409 (50%) were assigned to the tranexamic acid group and 404 (50%) to the control group. In the intention-to-treat analysis, 233 of 405 (58%) patients in the tranexamic acid group and 238 of 399 (60%) patients in the control group had a good clinical outcome (adjusted odds ratio [aOR] 0.92; 95% CI 0.69-1.24). None of the secondary outcomes showed significant differences between the treatment groups: excellent clinical outcome (mRS 0-2) (aOR 0.76; 95% CI 0.57-1.03), all-cause mortality at 30 days (aOR 0.91; 95% CI 0.65-1.28), and all-cause mortality at 6 months (aOR 1.10; 95% CI 0.80-1.52).DiscussionUltra-early and short-term tranexamic acid treatment did not improve clinical outcomes at 6 months in patients with aneurysmal subarachnoid hemorrhage and therefore cannot be recommended.Trial Registration InformationClinicalTrials.gov (NCT02684812; submission date February 18, 2016, first patient enrollment on July 24, 2013).Classification of EvidenceThis study provides Class II evidence that tranexamic acid does not improve outcomes in patients presenting with aneurysmal subarachnoid hemorrhage
    corecore