15 research outputs found

    Sources and emission of greenhouse gases in Danube Delta lakes

    Get PDF
    Production of methane and carbon dioxide as well as methane concentrations in surface waters and emissions to the atmosphere were investigated in two flow-through lake complexes (Uzlina-Isac and Puiu-Rosu-Rosulet) in the Danube Delta during post-flood conditions in May and low water level in September 2006. Retained nutrients fuelled primary production and remineralisation of bioavailable organic matter. This led to an observable net release of methane, particularly in the lakes Uzlina, Puiu and Rosu in May. Input from the Danube River, from redbuds and benthic release contributed to CH4 concentrations in surface waters. In addition to significant river input of CO2, this trace gas was released via aerobic remineralisation within the water column and in top sediments. Emission patterns of CO2 widely overlapped with those of CH4. Generally, greenhouse gas emissions peaked in the lake complex adjacent to the Danube River in May due to strong winds and decreased with increasing hydrological distance from the Danube River. Intense remineralisation of organic matter in the Danube Delta lakes results in a net source of atmospheric greenhouse gase

    Nutrient uptake and benthic regeneration in Danube Delta Lakes

    Get PDF
    We investigated the nutrient uptake capacity of three lakes (Uzlina, Matita and Rosu) within the Danube Delta during high water level in June and low water level in September 1999. Special emphasis was placed on nutrient cycling at the sediment-water interface and on the self-purification capacity of the lakes in the Danube Delta. In order to estimate the nutrient uptake of selected lakes we present in this paper the results of water analyses, benthic flux chamber experiments and deck incubation experiments of 15N-labeled sediment cores at the inflow and the outlet of the lakes. The external input of dissolved inorganic nitrogen and silica into the lakes decreases with increasing distance to the main Danube branches whereas the total dissolved phosphorus input is independent of the hydrological distance to the main branches. The nutrient loading is highest in the inflow channels, and decreases towards the outflow of the lakes. In June, the uptake of NO3 −, TDP and Si(OH)4 in the lakes was higher than in September. In contrast, NH4 + uptake was more intense in September, when benthic release was more intense as well. On average, about 76% of the external plus internal nitrogen and phosphorus input into the lakes was taken up by macrophytes and phytoplankton during the growing season, whereas the uptake of external nutrient input amounted to about 43%. The benthic release of ammonia and silica increases from June to September and indicates, that part of the nutrients taken up during the growing season might be released during winter. We estimate the net impact of the Delta on the nutrient reduction of the Danube during the growing season is about 4.3%, assuming 10% of the Danube water is flowing through the Delt

    Lake sediments fingerprinting in the Danube Delta, using composite magneto – lithological signatures; environmental and hydrosedimentary inferences

    No full text
    Abstract. The paper is focused on some results obtained during the interval 2006 – 2009, concerning the bottom sediments fingerprinting in 10 main lakes of the Danube Delta (DD), using a composite magnetic susceptibility (MS; k)-lithological tracer. However, some remarks to the previous data obtained within the last three decades are also done. The bottom sediments were collected with “van Veen”-type grab samplers. “Confined” vs “dynamic” vs “intermediate” deltaic environments are compared and defined by particular magnetic fingerprints recovered from lake sediments. The “dynamic environments”, usually placed close to the influx points of the master canals or connected by relatively short canals to the main DD branches, are reflected by intermediate and high MS values, which are assigned to k classes III, IV and V of the MS scale achieved by the authors (Rădan & Rădan, 2007). The “confined environments”, situated far from the Danubian supplies and from the direct riverine inputs, are characterised by a low intensity MS fingerprint, that is assigned to the lower k classes I and II, whereas the “intermediate” category is defined by k classes II and III. A distribution model points out the composition changes of the DD lake sediments, as the distance related to the Danubian source increases: the greater the distance to the source, the richer the sediments in organic matter and poorer in detrital mineral material. Several correlation coefficients (r) were calculated, e.g. related to k vs TOM (Organic matter), k vs CAR (Carbonate fraction), k vs (TOM+CAR) and k vs SIL (siliciclastic/mineral fraction). In addition to all these data, the diagrams showing the vertical distribution of the MS values for four sediment cores taken from three DD lakes are presented. The results demonstrate the abilities of the magnetic susceptibility as a lake sediments fingerprinting tool used for integrated lithological, hydrosedimentary and environmental-geoecological studies in deltaic lakes

    Nutrient uptake and benthic regeneration in Danube Delta Lakes

    Get PDF
    We investigated the nutrient uptake capacity of three lakes (Uzlina, Matita and Rosu) within the Danube Delta during high water level in June and low water level in September 1999. Special emphasis was placed on nutrient cycling at the sediment-water interface and on the self-purification capacity of the lakes in the Danube Delta. In order to estimate the nutrient uptake of selected lakes we present in this paper the results of water analyses, benthic flux chamber experiments and deck incubation experiments of 15N-labeled sediment cores at the inflow and the outlet of the lakes. The external input of dissolved inorganic nitrogen and silica into the lakes decreases with increasing distance to the main Danube branches whereas the total dissolved phosphorus input is independent of the hydrological distance to the main branches. The nutrient loading is highest in the inflow channels, and decreases towards the outflow of the lakes. In June, the uptake of NO3 −, TDP and Si(OH)4 in the lakes was higher than in September. In contrast, NH4 + uptake was more intense in September, when benthic release was more intense as well. On average, about 76% of the external plus internal nitrogen and phosphorus input into the lakes was taken up by macrophytes and phytoplankton during the growing season, whereas the uptake of external nutrient input amounted to about 43%. The benthic release of ammonia and silica increases from June to September and indicates, that part of the nutrients taken up during the growing season might be released during winter. We estimate the net impact of the Delta on the nutrient reduction of the Danube during the growing season is about 4.3%, assuming 10% of the Danube water is flowing through the Delt

    Sources and emission of greenhouse gases in Danube Delta lakes

    No full text
    ISSN:0944-1344ISSN:1614-749

    Organic matter governs N and P balance in Danube Delta lakes

    No full text
    ISSN:1015-1621ISSN:1420-905

    A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change

    No full text
    Palaeoecological records are required to test ecological hypotheses necessary for conservation strategies as short-term observations can insufficiently capture natural variability and identify drivers of biotic change. Here, we demonstrate the importance of an integrated conservation palaeobiology approach when making validated decisions for conservation and mitigating action. Our model system is the Razim-Sinoie lake complex (RSL) in the Danube Delta (Black Sea coast, Romania), a dynamic coastal lake system hosting unique Pontocaspian mollusc species that are now severely under threat. The Pontocaspians refer to an endemic species group that evolved in the Black Sea and Caspian Sea basins under reduced salinity settings over the past few million years. The natural, pre-industrial RSL contained a salinity gradient from fresh to mesohaline (18ppm) until human intervention reduced the inflow of mesohaline Black Sea water into the lake system. We reconstruct the evolution of the RSL over the past 2000 years from integrated sedimentary facies and faunal analyses based on 11 age-dated sediment cores and investigate the response of mollusc species and communities to those past environmental changes. Three species associations ("marine", "Pontocaspian" and "freshwater") exist and their spatio-temporal shifts through the system are documented. Variable salinity gradients developed, with marine settings (and faunas) dominating in the southern part of the system and freshwater conditions (and faunas) in the northern and western parts. Pontocaspian species have mostly occurred in the centre of the RSL within the marine-freshwater salinity gradient. Today, freshwater species dominate the entire system, and only a single Pontocaspian species (Monodacna colorata) is found alive. We show that the human-induced reduced marine influence in the system has been a major driver of the decline of the endemic Pontocaspian biota. It urges improved conservation action by re-establishing a salinity gradient in the lake system to preserve these unique species.</p

    A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change

    No full text
    Palaeoecological records are required to test ecological hypotheses necessary for conservation strategies as short-term observations can insufficiently capture natural variability and identify drivers of biotic change. Here, we demonstrate the importance of an integrated conservation palaeobiology approach when making validated decisions for conservation and mitigating action. Our model system is the Razim-Sinoie lake complex (RSL) in the Danube Delta (Black Sea coast, Romania), a dynamic coastal lake system hosting unique Pontocaspian mollusc species that are now severely under threat. The Pontocaspians refer to an endemic species group that evolved in the Black Sea and Caspian Sea basins under reduced salinity settings over the past few million years. The natural, pre-industrial RSL contained a salinity gradient from fresh to mesohaline (18ppm) until human intervention reduced the inflow of mesohaline Black Sea water into the lake system. We reconstruct the evolution of the RSL over the past 2000 years from integrated sedimentary facies and faunal analyses based on 11 age-dated sediment cores and investigate the response of mollusc species and communities to those past environmental changes. Three species associations ("marine", "Pontocaspian" and "freshwater") exist and their spatio-temporal shifts through the system are documented. Variable salinity gradients developed, with marine settings (and faunas) dominating in the southern part of the system and freshwater conditions (and faunas) in the northern and western parts. Pontocaspian species have mostly occurred in the centre of the RSL within the marine-freshwater salinity gradient. Today, freshwater species dominate the entire system, and only a single Pontocaspian species (Monodacna colorata) is found alive. We show that the human-induced reduced marine influence in the system has been a major driver of the decline of the endemic Pontocaspian biota. It urges improved conservation action by re-establishing a salinity gradient in the lake system to preserve these unique species.Applied Geolog

    A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change

    No full text
    Palaeoecological records are required to test ecological hypotheses necessary for conservation strategies as short-term observations can insufficiently capture natural variability and identify drivers of biotic change. Here, we demonstrate the importance of an integrated conservation palaeobiology approach when making validated decisions for conservation and mitigating action. Our model system is the Razim-Sinoie lake complex (RSL) in the Danube Delta (Black Sea coast, Romania), a dynamic coastal lake system hosting unique Pontocaspian mollusc species that are now severely under threat. The Pontocaspians refer to an endemic species group that evolved in the Black Sea and Caspian Sea basins under reduced salinity settings over the past few million years. The natural, pre-industrial RSL contained a salinity gradient from fresh to mesohaline (18ppm) until human intervention reduced the inflow of mesohaline Black Sea water into the lake system. We reconstruct the evolution of the RSL over the past 2000 years from integrated sedimentary facies and faunal analyses based on 11 age-dated sediment cores and investigate the response of mollusc species and communities to those past environmental changes. Three species associations ("marine", "Pontocaspian" and "freshwater") exist and their spatio-temporal shifts through the system are documented. Variable salinity gradients developed, with marine settings (and faunas) dominating in the southern part of the system and freshwater conditions (and faunas) in the northern and western parts. Pontocaspian species have mostly occurred in the centre of the RSL within the marine-freshwater salinity gradient. Today, freshwater species dominate the entire system, and only a single Pontocaspian species (Monodacna colorata) is found alive. We show that the human-induced reduced marine influence in the system has been a major driver of the decline of the endemic Pontocaspian biota. It urges improved conservation action by re-establishing a salinity gradient in the lake system to preserve these unique species

    A conservation palaeobiological approach to assess faunal response of threatened biota under natural and anthropogenic environmental change

    No full text
    Palaeoecological records are required to test ecological hypotheses necessary for conservation strategies as short-term observations can insufficiently capture natural variability and identify drivers of biotic change. Here, we demonstrate the importance of an integrated conservation palaeobiology approach when making validated decisions for conservation and mitigating action. Our model system is the Razim-Sinoie lake complex (RSL) in the Danube Delta (Black Sea coast, Romania), a dynamic coastal lake system hosting unique Pontocaspian mollusc species that are now severely under threat. The Pontocaspians refer to an endemic species group that evolved in the Black Sea and Caspian Sea basins under reduced salinity settings over the past few million years. The natural, pre-industrial RSL contained a salinity gradient from fresh to mesohaline (18ppm) until human intervention reduced the inflow of mesohaline Black Sea water into the lake system. We reconstruct the evolution of the RSL over the past 2000 years from integrated sedimentary facies and faunal analyses based on 11 age-dated sediment cores and investigate the response of mollusc species and communities to those past environmental changes. Three species associations ("marine", "Pontocaspian" and "freshwater") exist and their spatio-temporal shifts through the system are documented. Variable salinity gradients developed, with marine settings (and faunas) dominating in the southern part of the system and freshwater conditions (and faunas) in the northern and western parts. Pontocaspian species have mostly occurred in the centre of the RSL within the marine-freshwater salinity gradient. Today, freshwater species dominate the entire system, and only a single Pontocaspian species (Monodacna colorata) is found alive. We show that the human-induced reduced marine influence in the system has been a major driver of the decline of the endemic Pontocaspian biota. It urges improved conservation action by re-establishing a salinity gradient in the lake system to preserve these unique species
    corecore