1,678 research outputs found

    On Higgs and sphaleron effects during the leptogenesis era

    Full text link
    We discuss the effects of various processes that can be active during the leptogenesis era, and present the Boltzmann equations that take them into account appropriately. A non-vanishing Higgs number asymmetry is always present, enhancing the washout of the lepton asymmetry. This is the main new effect when leptogenesis takes place at T>1012T>10^{12} GeV, reducing the final baryon asymmetry and tightening the leptogenesis bound on the neutrino masses. If leptogenesis occurs at lower temperatures, electroweak sphalerons partially transfer the lepton asymmetry to a baryonic one, while Yukawa interactions and QCD sphalerons partially transfer the asymmetries of the left-handed fields to the right-handed ones, suppressing the washout processes. Depending on the specific temperature range in which leptogenesis occurs, the final baryon asymmetry can be enhanced or suppressed by factors of order 20%--40% with respect to the case when these effects are altogether ignored.Comment: one reference adde

    Leptogenesis without violation of B-L

    Get PDF
    We study the possibility of generating the observed baryon asymmetry via leptogenesis in the decay of heavy Standard Model singlet fermions which carry lepton number, in a framework without Majorana masses above the electroweak scale. Such scenario does not contain any source of total lepton number violation besides the Standard Model sphalerons, and the baryon asymmetry is generated by the interplay of lepton flavour effects and the sphaleron decoupling in the decay epoch.Comment: V2 (published version): 21 pages, 4 figures. Some explanations have been adde

    Flavour Issues in Leptogenesis

    Full text link
    We study the impact of flavour in thermal leptogenesis, including the quantum oscillations of the asymmetries in lepton flavour space. In the Boltzmann equations we find different numerical factors and additional terms which can affect the results significantly. The upper bound on the CP asymmetry in a specific flavour is weaker than the bound on the sum. This suggests that -- when flavour dynamics is included -- there is no model-independent limit on the light neutrino mass scale,and that the lower bound on the reheat temperature is relaxed by a factor ~ (3 - 10).Comment: 19 pages, corrected equations for flavour oscillation

    On fast CP violating interactions in leptogenesis

    Full text link
    We show that when the relevant CP violating interactions in leptogenesis are fast, the different matter density asymmetries are determined at each instant by a balance condition between the amount of asymmetry being created and destroyed. This fact allows to understand in a simple way many features of leptogenesis in the strong washout regime. In particular, we find some non-trivial effects of flavour changing interactions that conserve lepton number, which are specially relevant in models for leptogenesis that rely heavily on flavour effects.Comment: V2: To match published version in JCAP. Minor changes, including one figure, with respect to V1. 17 pages, 4 figure

    Supersymmetric Leptogenesis

    Full text link
    We study leptogenesis in the supersymmetric standard model plus the seesaw. We identify important qualitative differences that characterize supersymmetric leptogenesis with respect to the non-supersymmetric case. The lepton number asymmetries in fermions and scalars do not equilibrate, and are related via a non-vanishing gaugino chemical potential. Due to the presence of new anomalous symmetries, electroweak sphalerons couple to winos and higgsinos, and QCD sphalerons couple to gluinos, thus modifying the corresponding chemical equilibrium conditions. A new constraint on particles chemical potentials corresponding to an exactly conserved RR-charge, that also involves the number density asymmetry of the heavy sneutrinos, appears. These new ingredients determine the 3×43\times 4 matrices that mix up the density asymmetries of the lepton flavours and of the heavy sneutrinos. We explain why in all temperature ranges the particle thermodynamic system is characterized by the same number of independent quantities. Numerical differences with respect to usual treatment remain at the O(1){\cal O}(1) level.Comment: 30 pages, 2 figures. Typos corrected, one reference added. Version published in JCA

    The importance of flavor in leptogenesis

    Full text link
    We study leptogenesis from the out-of-equilibrium decays of the lightest heavy neutrino N1N_1 in the medium (low) temperature regime, T\lsim 10^{12} GeV (101010^{10} GeV), where the rates of processes mediated by the τ\tau (and μ\mu) Yukawa coupling are non negligible, implying that the effects of lepton flavors must be taken into account. We find important quantitative and qualitative differences with respect to the case where flavor effects are ignored: (i) The cosmic baryon asymmetry can be enhanced by up to one order of magnitude; (ii) The sign of the asymmetry can be opposite to what one would predict from the sign of the total lepton asymmetry ϵ1\epsilon_1; (iii) Successful leptogenesis is possible even with ϵ1=0\epsilon_1=0.Comment: 27 pages, 2 figures. Added 3 reference

    CP violation in scatterings, three body processes and the Boltzmann equations for leptogenesis

    Full text link
    We obtain the Boltzmann equations for leptogenesis including decay and scattering processes with two and three body initial or final states. We present an explicit computation of the CP violating scattering asymmetries. We analyze their possible impact in leptogenesis, and we discuss the validity of their approximate expressions in terms of the decay asymmetry. In scenarios in which the initial heavy neutrino density vanishes, the inclusion of CP asymmetries in scatterings can enforce a cancellation between the lepton asymmetry generated at early times and the asymmetry produced at later times. We argue that a sizeable amount of washout is crucial for spoiling this cancellation, and we show that in the regimes in which the washouts are particularly weak, the inclusion of CP violation in scatterings yields a reduction in the final value of the lepton asymmetry. In the strong washout regimes the inclusion of CP violation in scatterings still leads to a significant enhancement of the lepton asymmetry at high temperatures; however, due to the independence from the early conditions that is characteristic of these regimes, the final value of the lepton asymmetry remains approximately unchanged.Comment: 24 pages, 6 figures. One appendix added. Some numerical results and corresponding figures (mainly fig. 3) corrected. Final version to be published in JHE

    Non-resonant leptogenesis in seesaw models with an almost conserved B-L

    Full text link
    We review the motivations and some results on leptogenesis in seesaw models with an almost conserved lepton number. The paper is based on a talk given at the 5th International Symposium on Symmetries in Subatomic Physics, SSP2012.Comment: 8 pages, 1 figure. Published in the proceedings of the 5th International Symposium on Symmetries in Subatomic Physics, SSP201
    corecore