18 research outputs found

    Non-catalytic growth of metal oxide nanowires : properties and growth mechanism investigations

    Get PDF
    This thesis is devoted to the non-catalytic syntheses of metal oxide nanowires (NWs), and investigations of their properties and growth mechanisms. Two different approaches were applied for the syntheses - metal resistive heating and vapor growth methods. The products were thoroughly characterized by electron microscopy, optical and X-ray characterization techniques. The synthesized NWs were examined for field emission (FE) and ultraviolet (UV) sensing applications. The resistive heating of various metals was demonstrated to be an efficient, simple and rapid method for the synthesis of CuO, Fe2O3, V2O5 and ZnO NWs under ambient air conditions. Fe2O3 NW formation was detected after just 2 s of heating; other metal oxide NWs were grown after 10 s. The NW growth mechanism during metal oxidation was explained based on observations of ZnO and Fe2O3 NW growth. The mechanism is based on the diffusion of metal ions to the surface through grain boundaries and to the tip of the growing NW through defect diffusion and by surface diffusion. FE from NWs grown by the resistive heating method exibited promising results for applications in vacuum electronic devices. Cold electron FE measurements showed that CuO NWs have a very low threshold electric field of 4 V/µm at a current density of 0.01 mA/cm². For the vapor growth of ZnO tetrapods (ZnO-Ts) a vertical flow reactor was designed and constructed. It was shown that the morphology of ZnO-Ts could be adjusted via the Zn vapor pressure in the reactor. The highest aspect ratio of ZnO-T legs was obtained at 700 °C, at a Zn partial pressure of 0.08 atm. ZnO-Ts demonstrated application possibilities for transparent and flexible UV sensors. Sensors based on ZnO-Ts showed a 45-fold current increase under UV irradiation with an intensity of 30 µW/cm² at a wavelength of 365 nm, and a response time of 0.9 s. The high performance of the device was explained by the multiple contact barriers

    Multifunctional Nanomaterials for Energy Applications

    Get PDF
    In the last few decades, global energy requirements have grown exponentially, and increased demand is expected in the upcoming decades [...

    ZnO nanowire application in chemoresistive sensing: A review

    Get PDF
    This article provides an overview of the recent development of ZnO nanowires (NWs) for chemoresistive sensing. Working mechanisms of chemoresistive sensors are unified for gas, ultraviolet (UV) and bio sensor types: single nanowire and nanowire junction sensors are described, giving the overview for a simple sensor manufacture by multiple nanowire junctions. ZnO NW surface functionalization is discussed, and how this effects the sensing is explained. Further, novel approaches for sensing, using ZnO NW functionalization with other materials such as metal nanoparticles or heterojunctions, are explained, and limiting factors and possible improvements are discussed. The review concludes with the insights and recommendations for the future improvement of the ZnO NW chemoresistive sensing

    ZnO Nanowires for Dye Sensitized Solar Cells

    Get PDF
    This chapter provides a broad review of the latest research activities focused on the synthesis and application of ZnO nanowires (NWs) for dye‐sensitized solar cells (DSCs) and composed of three main sections. The first section briefly introduces DSC‐working principles and ZnO NW application advantages and stability issues. The next section reviews ZnO NW synthesis methods, demonstrating approaches for controlled synthesis of different ZnO NW morphology and discussing how this effects the overall efficiency of the DSC. In the last section, the methods for ZnO NW interface modification with various materials are discussed, which include ZnO core‐shell structures with semiconductive or protective layers, ZnO NW hybrid structures with other materials, such as nanoparticles, quantum dots and carbon nanomaterials and their benefit for charge and light transport in DSCs. The review is concluded with some perspectives and outlook on the future developments in the ZnO nanowire application for DSCs

    Mechanistic investigation of ZnO nanowire growth

    Get PDF
    ZnO nanowire (NW) growth mechanism was investigated in a nonvapor and noncatalytic approach for the controlled NW synthesis in a second time scale. The experimental results showed what ZnO NW growth was determined by migration of zincinterstitials and vacancies in a ZnO layer, which should be also considered in other synthesis techniques and mechanisms. The mechanism of the ZnO NW growth was explained as due to the advantageous diffusion through grain boundaries in ZnO layer and crystal defects in NWs. Additionally, on the basis of photoluminescence measurements, a feasible application of as-produced wires for optoelectronic devices was demonstrated.Peer reviewe

    Nanowires - Synthesis, Properties and Applications

    No full text
    Nanowires are attracting wide scientific interest due to the unique properties associated with their one-dimensional geometry. Developments in the understanding of the fundamental principles of the nanowire growth mechanisms and mastering functionalization provide tools to control crystal structure, morphology, and the interactions at the material interface, and create characteristics that are superior to those of planar geometries. This book provides a comprehensive overview of the most important developments in the field of nanowires, starting from their synthesis, discussing properties, and finalizing with nanowire applications. The book consists of two parts: the first is devoted to the synthesis of nanowires and characterization, and the second investigates the properties of nanowires and their applications in future devices

    Flexible Electronics

    No full text
    The interest in flexible electronics is on the rise as it brings an added functionality and esthetic value in the unconventional interfaces, such as biomonitoring systems, wearables, flexible textiles, paper-based technologies, and many other curves of soft schemes, for which traditional electronics are not suitable. The demand in new flexible platforms turns to a pursuit for functional materials and technologies commonly compatible with a low temperature, high-throughput processing, and novel methods for device integration. A wide range of functional materials involving nanoparticles, composites, semiconductor and metallic nanowires, carbon nanomaterials, polymers, conductive inks, and different hybrid structures are particularly interesting. This book brings a comprehensive overview on the most important technology development in the field of flexible electronics

    Multifunctional Nanomaterials for Energy Applications

    Get PDF
    In the last few decades, global energy requirements have grown exponentially, and increased demand is expected in the upcoming decades [...

    Direct observation of nanowire growth and decomposition

    Get PDF
    Fundamental concepts of the crystal formation suggest that the growth and decomposition are determined by simultaneous embedding and removal of the atoms. Apparently, by changing the crystal formation conditions one can switch the regimes from the growth to decomposition. To the best of our knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected as a model object. The atomic layer growth/decomposition was studied by varying an O2 partial pressure. Three distinct regimes of the atomic layer evolution were experimentally observed: growth, transition and decomposition. The transition regime, at which atomic layer growth/decomposition switch takes place, is characterised by random nucleation of the atomic layers on the growing {111} surface. The decomposition starts onthe side of the nanowire by removing the atomic layers without altering the overall crystal structure, which besides the fundamental importance offers new possibilities for the nanowire manipulation. Understanding of the crystal growth kinetics and nucleation at the atomic level is essential for the precise control of 1D crystal formation.Peer reviewe
    corecore