
9HSTFMG*aeeafh+ 

ISBN 978-952-60-4405-7 
ISBN 978-952-60-4406-4 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Science 
Department of Applied Physics 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 13

2
/2

011 

Nanowires (NWs), exhibit extraordinary 
properties, distinctive from the bulk 
material, and therefore are an excellent 
material for nanoscale applications. The 
vast majority of methods for NW fabrication 
use catalysts, however, catalyst-free 
methods offer the facile fabrication of pure 
nanowires with fewer technological steps. 
For the development of non-catalytic 
techniques an understanding of the growth 
mechanism is crucial. The aim of this thesis 
was to propose and to develop novel 
techniques for the non-catalytic synthesis of 
metal oxide NWs, to examine their 
structures and properties, and to investigate 
their growth mechanisms and potential 
applications. Two different approaches were 
applied for the synthesis: metal resistive 
heating and vapor growth methods. The NW 
growth mechanism during the metal 
oxidation was studied. The vapor growth 
method was utilized for the synthesis of ZnO 
tetrapods. The synthesized NWs were 
examined for field emission (FE) and 
ultraviolet (UV) sensing applications. 
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This thesis is devoted to the non-catalytic syntheses of metal oxide nanowires 
(NWs), and investigations of their properties and growth mechanisms. Two different 
approaches were applied for the syntheses ─ metal resistive heating and vapor 
growth methods. The products were thoroughly characterized by electron 
microscopy, optical and X-ray characterization techniques. The synthesized NWs 
were examined for field emission (FE) and ultraviolet (UV) sensing applications.  

The resistive heating of various metals was demonstrated to be an efficient, simple 
and rapid method for the synthesis of CuO, Fe2O3, V2O5 and ZnO NWs under 
ambient air conditions. Fe2O3 NW formation was detected after just 2 s of heating; 
other metal oxide NWs were grown after 10 s. The NW growth mechanism during 
metal oxidation was explained based on observations of ZnO and Fe2O3 NW growth. 
The mechanism is based on the diffusion of metal ions to the surface through grain 
boundaries and to the tip of the growing NW through defect diffusion and by surface 
diffusion. FE from NWs grown by the resistive heating method exibited promising 
results for applications in vacuum electronic devices. Cold electron FE 
measurements showed that CuO NWs have a very low threshold electric field of 4 
V/�m at a current density of 0.01 mA/cm2. 

For the vapor growth of ZnO tetrapods (ZnO-Ts) a vertical flow reactor was 
designed and constructed. It was shown that the morphology of ZnO-Ts could be 
adjusted via the Zn vapor pressure in the reactor. The highest aspect ratio of ZnO-T
legs was obtained at 700 °C, at a Zn partial pressure of 0.08 atm. ZnO-Ts 
demonstrated application possibilities for transparent and flexible UV sensors. 
Sensors based on ZnO-Ts showed a 45-fold current increase under UV irradiation 
with an intensity of 30 µW/cm2 at a wavelength of 365 nm, and a response time of 
0.9 s. The high performance of the device was explained by the multiple contact 
barriers. 
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1. Introduction 
 

“There’s plenty of room at the bottom.” 

 (R. Feynman, 1959) 

 
Feynman in his famous talk [1] sent an invitation to enter a new field of 

physics “on a small scale”. The possibilities he outlined of building devices 

out of atoms attracted many researchers to work on this effort. Significant 

results were achieved only after the invention of microscopes, which are 

essential for characterization at the nanometer level. Nanometer-scale 

structures are usually defined as those in which at least one dimension 

measures less than 100 nm. One-dimensional (1D) representatives of these 

structures (quantum wires), such as nanowires (NW), have nanometer-

scale diameter, but may have lengths of a micron or longer. Owing to this, 

NWs exhibit extraordinary properties, distinctive from the bulk material, 

and therefore interest has grown exponentially with the recognition that 

NWs are an excellent material for nanoscale applications.  

Self-assembling growth offers new perspectives on the building and 

application of nanoscale structures. The vast majority of methods for NW 

fabrication use vapor–liquid–solid (VLS) growth which has been 

extensively studied, the main benefit being from the catalyst facilitating 

structural control. In contrast non-catalytic synthesis has been disregarded 

and even the possibility of NW growth in the absence of metallic particlesis 

questioned. However, catalyst-free methods offer the facile fabrication of 

pure nanowires with fewer technological steps. For the development of 

non-catalytic techniques an understanding of the growth mechanism is 

crucial, and so more studies should be focused on the diameter control. 

The aim of this thesis was to propose and to develop novel techniques for 

the non-catalytic synthesis of metal oxide NWs, to examine their structures 

and properties, and to investigate their growth mechanisms and potential 

applications. Two different approaches were applied for the synthesis ─ 

metal resistive heating and vapor growth methods. The NW growth 

mechanism during the metal oxidation was studied. The vapor growth 

method was utilized for the synthesis of ZnO tetrapods. The synthesized 

NWs were examined for field emission (FE) and ultraviolet (UV) sensing 

applications. 
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2. Metal oxide nanowires  
 

In this section, the main synthesis methods for metal oxide NWs and the 

generally accepted growth mechanisms are briefly introduced. 

Metal oxide NWs, or 1D structures also known as whiskers, nanorods, 

nanobelts or nanoribbons, have been investigated since the late 1960s [2], 

but received considerable attention only after the nanotechnology boom, 

and they remain one of the most researched groups of nanomaterials. NWs 

have demonstrated interesting electrical transport properties that are not 

seen in bulk materials. This is because electrons can be quantum-confined 

and thus can occupy discrete energy levels that are different from the 

energy bands found in bulk materials. And, due to a large surface-to volume 

ratio, nanowires demonstrate superior sensitivity to surface chemical 

processes. In addition, their size confinement provides for a tunable band 

gap, higher optical gain, which makes devices operate faster [3-5]. 

Moreover metal oxide NWs have an advantage over conventional devices 

based on semiconductors, as at the nanoscale, the latter materials suffer 

from the extremely small number of carriers within a device and large 

phase fluctuations. This serious constraint can be resolved in devices that 

are based on transition metal oxides because of their orders-of-magnitude 

greater carrier density (1022 to 1023 cm-3) [6, 7]. The planar defects, such as 

twin boundaries and stacking faults, which are typical for non-catalytic NW 

growth can open new possibilities for other applications, as ordered arrays 

of planar faults can result in new phases of well known materials with 

distinct properties. It was shown that the photon energy is tunable by 

controlling the intervals of the boundaries, without changing the crystal 

structure and the composition [8, 9]. The control of defect structure in NWs 

could open up possibilities in optics, similar to doping of pure 

semiconductors in electronics. 

All these and other properties make metal oxide NWs interesting for a 

number of diverse applications, such as chemical and biosensors [10, 11], 

field emission devices [12], solar cells [13], water splitting [14], photonics 

[15, 16], and other electronic and optoelectronic devices [17-19]. 

 

2.1 Synthesis methods 
  

During the last decade, 1D metal oxide nanostructures have been 

extensively investigated. A vast majority of the studies have focused on the 

synthesis and fabrication of the nanostructures. Typically, two categories of 

synthesis and fabrication techniques are generally used. One is the so called 

“bottom-up” techniques using vapor phase deposition, chemical synthesis 
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or self-assembly. The other is the “top-down” approach utilizing 

lithography and precision engineered tools for cutting and etching, in order 

to fabricate nanoscale objects out of bulk materials. In the bottom-up 

category, several approaches have become well-established, which include 

the extensively explored vapor phase deposition method, and liquid phase 

deposition (solution synthesis approach). Another important NW 

fabrication technique is the application of templates, such as porous 

alumina or silicon for synthesis. Generally, by this technique NWs are 

synthesized in the nanopores of a template, which are filled by gas or liquid 

reactions, and finally the template is removed. 

On semiconductor nanostructures, etching processes always lead to 

significant surface damage, and thus surface states are introduced in the 

nanostructures; for this reason, self-organized nanostructures are desirable 

not only in fundamental research but also in future nanodevice design and 

fabrication [3]. In this work the self-organization method for NW growth 

was used, and so only the main “bottom-up” techniques will be described. 

 
2.1.1 Epitaxial growth  
 

Molecular beam epitaxy (MBE) isused in semiconductor industry for thin 

film deposition. By exploiting the surface preparation or catalyst particles 

these techniques can lead to 1D growth of nanowires. 

The MBE technique has been employed to synthesize semiconductor 

nanowires [20, 21]. Contrary to other synthesis techniques, MBE works 

under ultra-high vacuum conditions, which allows high-quality 

semiconductor nanowires to be obtained. The evaporated source atoms or 

molecules from the effusion cells behave like a beam aimed directly at the 

substrate (Figure 2.1). NW grow on the substrate which is heated to desired 

temperature, with the help of catalyst particles. Beams of different material 

can be supplied. The growth, surface structures and contamination can be 

monitored in situ using reflection high-energy electron diffraction, Auger 

electron spectroscopy and other surface probing techniques. The NW 

structure is determined by the catalyst particle preparation, material 

deposition rate and deposition temperature. The preparation of the 

substrate surface is also critical for growing high-quality NWs, as the 

substrate influences the growth direction of the NW. The growth rate of 

NWs is about 0.1 nm/s (for ZnSe at 530°C) [21]. 
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Figure 2.1. Schematic of molecular beam epitaxy growth chamber (RHEED: reflection 
high-energy electron diffraction). 

 

2.1.2 Metalorganic vapor phase epitaxy 
 

Metalorganic vapor phase epitaxy (MOVPE), also known as metalorganic 

or organometallic chemical vapor deposition, in contrast to the MBE 

synthesis of NW, is carried out by chemical reaction and not physical 

deposition. The precursor is volatile metalorganic or organometallic 

material, which decomposes at the heated substrate from gas phase. As in 

MBE, the substrate preparation is crucial for control of the structures 

obtained. The main defects that often occur in thicker NWs made by these 

techniques are twin boundaries and stacking faults [21, 22]. 

 

2.1.3 Thermal evaporation 
 

NWs and some interesting morphologies of nanostructures such as nano-

tetrapods, nanoribbons and comb-like structures [23, 24] can be fabricated 

by a simple method of thermal evaporation of solid source materials. The 

experimental setup is shown schematically in Figure 2.2. The temperature 

gradient and the gas concentration (or vacuum) conditions are two critical 

parameters for the formation of NWs by this method. Typical materials 

suitable for this fabrication are metal oxides [25]. 
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Figure 2.2. An experimental setup of the thermal evaporation method for nanowire 
synthesis. 

 

The fabrication of these NWs is accomplished by simply evaporating 

commercial metal oxide powders at elevated temperatures under a vacuum 

or in an inert gas atmosphere. NW products form in the low temperature 

regions where materials deposit from the vapor phase. NWs are generated 

directly from the vapor phase in the absence of a metal catalyst, and this 

process is often called vapor–solid (VS) growth. 

 

2.1.4 Metal oxidation 
 

It has been known since the late 1960s [2] that if heated at elevated 

temperatures in an oxidizing atmosphere some metals, such as Cu, Fe, Zn, 

V, Cr, Nb, W, tend to grow metal oxide NWs on their surface [26-30]. 

Heating is mostly done in a furnace, but plasma [31] or microwave [32] 

heating can be also used to lower the synthesis temperature. Metal 

oxidation is different from the thermal evaporation technique, as high 

temperatures are not needed and the vapor pressure of a metal or its oxide 

can be negligible. Moreover, NWs grow directly on the surface of the 

oxidized metal and vapor transport from source material to substrate is not 

relevant. Dry or humid oxygen or air is mostly used as the oxidizing 

atmosphere. 

 

2.1.5 Solution methods  
 

Solution-based 1D material synthesis methods offer the possibility of 

facile high yield production with low energy consumption and therefore are 

of interest for industrial application. Typically the process is conducted in 

an aqueous mixture of soluble metal salts (metal and/or metal–organic) of 

the precursor materials. Usually the mixed solution is placed in an 

autoclave at an elevated temperature and relatively high pressure 

conditions. Typically, the temperature is between 100°C and 300°C and the 

pressure exceeds 1 atm [33, 34]. Nanocrystals synthesized in aqueous 

media may often suffer from poor crystallinity, but those synthesized under 

nonhydrolytic conditions at a high temperature, in general, show much 
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better crystal quality [35, 36]. Surfactants [37] or templates [38] can be 

used to obtain 1D structures. 

 

2.2 Growth mechanisms 
 

All growth mechanisms can be generally divided into catalytic growth, 

where the 1D form of the nanowire is controlled by metallic particles, and 

non-catalytic growth, where no particles guiding the growth are present.  

 

2.2.1 Catalytic growth 
 

The classical VLS growth mechanism, introduced in a landmark paper by 

Wagner and Ellis [39], is still applicable for most of the NWs produced 

today. A schematic view of Si NW growth from Au catalyst is shown in 

Figure 2.3. VLS is a catalyst-assisted growth process which uses metal 

nanoparticles as the nucleation seeds. These nucleation seeds determine 

the interfacial energy, growth direction and diameter of the NWs, so the 

proper choice of the catalyst is critical. The requirement for VLS growth is a 

suitable solubility of the constituents of the growing NW within the metal 

seed particles, and a growth temperature above the eutectic melting point. 

In the case of growing metal oxide NWs, the VLS process is initiated by the 

formation of a liquid alloy droplet which contains both catalyst and source 

metal. Precipitation occurs when the liquid droplet becomes supersaturated 

with the source metal and under the flow of oxygen, metal oxide NW is 

formed [40]. Normally the resulting crystal is grown along one particular 

crystallographic orientation which corresponds to the minimum atomic 

stacking energy, leading to NW structure formation.  

Advances in microscopy, which enabled the growth of NWs to be observed 

in situ, brought new evidence into consideration, questioning the role of the 

catalyst. The possibility of NW growth under the eutectic temperature was 

shown [41-44]. Moreover, during the NW growth the catalyst particles were 

evidenced to be in both solid and liquid state [42, 44, 45], liquid alloy is not 

required for NW growth [42, 46], therefore the vapor–solid–solid  

mechanism was introduced [46]. It was also shown that a NW grows in 

layer-by-layer fashion at the catalyst–NW interface [45, 47]. 
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Figure 2.3. The vapor–liquid–solid growth mechanism of Si nanowires gold/silane 
reaction. 

 

2.2.2 Non-catalytic growth  
 

Non-catalytic growth of NW is less well understood. In the absence of 

metallic particles that assist the NW growth, the mechanism is interpreted 

as self catalytic growth. In general, if the NW synthesis involves no catalysts 

and the process involves vapor condensation, then the process is called VS. 

Self catalytic. In self catalytic processes, the metal which is present in 

the nanowire performs the role of the catalytic particle, so no additional 

metals are used. The initial droplet for self catalysis is formed from the 

substrate or from vapor by decomposition or transport [48-51]. For 

example, MOVPE growth of GaN and InN NW on sapphire has been 

demonstrated using a single molecule precursor, which during initial 

decomposition produces metallic droplets that can seed subsequent NW 

growth [52, 53]. 

Defect-induced growth. It was first pointed out by Frank [54-56] that 

perfect crystals would only grow exceedingly slowly. Real crystals grow 

comparatively rapidly because they contain crystal defects, providing the 

necessary fast growth front. Line defects, such as screw dislocations with 

self-perpetuating steps, can provide facile spiral growth fronts for crystal 

growth when the supersaturation is lower than what is required for crystal 

growth on perfect crystal facets. This dislocation-driven growth mechanism 

was proposed in the 1950s by Sears to explain the formation of micrometer-

diameter metal whiskers [57, 58]. However, after the original Wagner and 

Ellis VLS work [39], crystal dislocations were disregarded as the driving 

force for 1D anisotropic growth. Only recently [59, 60] screw dislocations 

have been demonstrated to be responsible for tubular and cylindrical NW 

growth. A NW grown by this mechanism does not depend on catalysts but 

instead is driven by an axial screwlike dislocation along the length of the 

NW, providing a continuous growth front for 1D crystal growth, whereas 

growth on the crystalline side walls is suppressed (Figure 2.4). 



8 
 

 

 
Figure 2.4. A screw dislocation-driven nanowire growth.  

 

It seems plausible that planar defects, such as twin boundaries and 

stacking faults, could also provide the necessary fast growth fronts. One of 

the aims of this thesis was to investigate this possibility. 
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3. Methods 
 

In this section, a brief overview of the NW synthesis methods and 

characterization techniques used in this work is given. 

 
3.1 Non-catalytic synthesis 
 

Two methods for non-catalytic synthesis were used. First, for a more 

fundamental understanding and observation of NW growth, a resistive 

heating method was proposed and examined. Later, for more application-

driven research, gas phase synthesis was used, which enabled gram 

quantities of the NW to be produced.  

 

3.1.1 Resistive heating 
 

Resistive heating, or Joule’s heating method, was proposed and 

elaborated in the framework of this thesis. This method allows pure metal 

wires to be quickly and controllably heated to the required temperatures.  

A schematic of the equipment is shown in Figure 3.1. The synthesis of 

NWs was carried out under oxidizing conditions by means of the simple 

resistive heating of as-received pure metal wires or foils suspended between 

two electric contacts. The temperature was in the range 400—700 °C, and 

the heating time was from 2s to 10 min. The samples were heated by direct 

current using a standard laboratory power supply. For heating the 

substrates to synthesis temperatures, an electric current from 1 to 9 A 

(corresponding to a power of 2–8 W) was required depending on the 

material. The wire temperature during the growth was monitored and 

regulated by an infrared pyrometer (Infratherm IGA 12-s) with a 100 μm 

measuring spot size. NWs were mostly synthesized under atmospheric 

conditions without the gas chamber, but also in growth atmospheres of O2, 

humid air or low vacuum were used. Ambient air conditions corresponded 

to regular laboratory and atmospheric pressure conditions with a 

temperature from 21 to 24 °C and a relative humidity from 20 to 45%. The 

NWs were absent only at both ends of the wire due to the heat losses and, as 

a result, the lower temperature in the vicinity of the contacts.  

Metal wires 0.25 mm in diameter or foils with 0.1–0.04 mm thickness 

were used as substrates. Mo (99.97%), Cu (99.999%), W (99.9+%) and Ti 

(99.6+%) wires were purchased from Aldrich Chemical, and Co, Zn (both 

99.99+%), Fe (99.99% and 99.5%), V (99.8%), Ni (99.98%), Pd (99.9%), Sn 

(99.99+%) and In (99.999%) wires were purchased from Goodfellow 

Cambridge Ltd. Characterization of the samples was done without any post-
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processing. For transmission electron microscopy (TEM) investigations, the 

NWs were dry transferred by pressing samples on TEM grids. 

 

 
Figure 3.1. Resistive heating equipment: a) schematic illustration; b) photo of nanowire 
synthesis process; c) Fe wires treated for 3 min under ambient air conditions. 

 

3.1.2 Gas phase synthesis 
 

The synthesis reactor consisted of a vertical quartz tube inserted in a 

furnace, a metal evaporator inside the tube and the product collection 

system (Figure 3.2). A vertical orientation of the reactor was used to 

minimize recirculation associated with the buoyancy forces. The metal 

evaporator was a stainless steel tube filled with Zn powder (99.999% 

purity) mixed with SiO2 carrier granules (99.99% purity) of 0.2—0.7 mm in 

size. 1 g of the mixture, consisting of 2/3 wt. % zinc and 1/3 wt.% SiO2, was 

placed on a supporting net in the evaporator. The temperature of the 

evaporator was measured using a K-type thermocouple, mounted 

underneath the supporting net. The position of the evaporator was adjusted 

so that its temperature was the same as the furnace temperature. Argon 

(99.999%), purified from an oxygen species by an oxygen trap (Agilent 

OT3-4), was utilized as the carrier gas through the evaporator at a flow rate 

of 0.3 L/min. An outer air flow was introduced in the reactor at a flow rate 

of 1.0 L/min. The flow behavior was maintained to be laminar with the 

Reynolds number varying from 220 to 330 depending on the experimental 

conditions. The average residence time in the reactor varied from 1.9 to 2.6 

s. Product was collected downstream of the reactor on a nitrocellulose filter 

with a pore size of 0.45 μm. 
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Figure 3.2. Schematic view of the vertical flow reactor. Dimensions are given in mm. 
 
3.2 Characterization 
 
3.2.1 Electron microscopy 

 

In this work, scanning electron microscopy (SEM) and high-resolution 

TEM were used for structural sample characterization. 

 

3.2.1.1 Scanning electron microscopy 
A simplified illustration of the SEM imaging process is shown in Figure 

3.3a. A beam of electrons is emitted from an electron source, by either field 

or thermionic emission, with primary electron energies of 1—15 keV. The 

beam is shaped using electromagnetic condenser lenses and focused on the 

sample by the objective lens. The focused spot is scanned on the sample 

using a coil, and secondary electrons emitted by atoms near the 

measurement spot are detected. The final image is formed by combining 

position information from the scanning coil driver with the detector signal. 

Back-scattered electrons can also be used for imaging. The resolution of 

SEM is typically a few nanometers, and it gives a good general overview of 

the surface density of NWs, their length and growth orientation. 

SEM measurements were made with a Leo 982 Gemini microscope and a 

JEOL JSM-7500F microscope. 



12 
 

 

 
Figure 3.3. Simplified schematic diagrams of a) scanning electron microscope and b) 
transmission electron microscope. 

 

3.2.1.2 Transmission electron microscopy 
A schematic view of TEM is shown in Figure 3.3b. A parallel beam of 

electrons emitted by an electron gun is focused by a condenser lens onto the 

sample. The electron beam travels through the specimen, and some of the 

electrons are scattered. The transmitted portion is focused by an objective 

lens to project a magnified image onto a screen.  

As an additional TEM technique, electron diffraction (ED) is used to study 

matter by firing electrons at a sample and observing the resulting 

interference pattern arising at the sample which arises  from the wavelike 

nature of electrons. The periodic structure of a crystalline solid acts as a 

diffraction grating in scattering electrons. Analysis of the observed 

diffraction pattern gives information on the structure of the crystal, 

producing the diffraction pattern. TEM and ED observations were carried 

out with a Philips CM200 microscope and a JEOL-2200FS double 

aberration-corrected microscope, both operated at 200 kV.  

 

3.2.2 Optical characterization 
 
3.2.2.1 Optical absorption spectroscopy 

In optical absorption spectroscopy, the absorption of light as a function of 

frequency or wavelength is measured. The sample absorbs photons from 

the incident light, and the intensity of the absorption varies as a function of 

frequency.  

In this work, the absorption spectra of ZnO tetrapods (ZnO-Ts) were 

measured using a double line UV-visible-near infrared spectrophotometer 

(Perkin-Elmer lambda 900). ZnO-Ts were sonicated in ethanol and then 

transfered onto a quartz substrate for absorbance measurement. 
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Wavelengths from 250 nm to 800 nm were used for the optical absorption 

spectroscopy. 

 

3.2.2.2 Photoluminescence 
Photoluminescence (PL) is a tool for contactless and nondestructive 

probing of the electronic structure of materials. Photo-excitation causes 

electrons within the material to move into allowed excited states. When 

these electrons return to their equilibrium states, the excess energy is 

released and may include the emission of light (a radiative process) or may 

not (a nonradiative process). The energy of the emitted light (PL) relates to 

the difference in energy levels between the two electron states involved in 

the transition between the excited state and the equilibrium state. 

PL measurements were carried out at room temperature using a HeCd 

laser operating at 325 nm for excitation at an average intensity of about 20 

W/cm2. The sample PL was spectrally resolved in a monochromator and 

detected using a photomultiplier tube and lock-in techniques. 

 

3.2.2.3 Raman spectroscopy 
Raman spectroscopy is a spectroscopic technique based on inelastic 

scattering of monochromatic light, usually from a laser source. Inelastic 

scattering means that the frequency of photons in monochromatic light 

changes upon interaction with a sample. Photons of the laser light are 

absorbed by the sample and then reemitted. Frequency of the reemitted 

photons is shifted up or down in comparison with the original 

monochromatic frequency, which is called the Raman effect. This shift 

provides information about vibrational, rotational and other low frequency 

transitions in molecules. 

Raman spectra were obtained with a Wintech alpha300 spectrometer 

using a frequency doubled Nd:YAG green laser (λ = 532 nm). In order to 

minimize possible sample degradation, a low laser power of about 160 μW 

was used for the measurements. 

 

3.2.3 X-ray techniques 
 

3.2.3.1 X-ray photoelectron spectroscopy 
X-ray photoelectron spectroscopy (XPS) is a quantitative spectroscopic 

technique that measures the elemental composition, empirical formula, 

chemical state and electronic state of the elements that exist within a 

material. XPS spectra are obtained by irradiating a material with a beam of 

X-rays while simultaneously measuring the kinetic energy and number of 
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electrons that escape from the top 1 to 10 nm of the material being 

analyzed. XPS requires ultra high vacuum conditions. 

XPS was carried out with a Surface Science Instruments SSX-100 ESCA 

spectrometer using monochromatic Al Kα x-rays (1486.6 eV). Core-level 

spectra were recorded with a pass energy of 60 eV and an X-ray spot size of 

300 μm. The binding energy scale was referenced to the characteristic 

carbon 1s binding energy of 285 eV. 

 

3.2.3.2 X-ray diffraction 
X-ray diffraction (XRD) is a technique used to characterize the 

crystallographic structure, crystallite size (grain size), and preferred 

orientation in polycrystalline or powdered solid samples. XRD is based on 

observing the scattered intensity of an X-ray beam hitting a sample as a 

function of incident and scattered angle, polarization, and wavelength or 

energy. 

In this work the crystalline structure of the ZnO-Ts was examined via 

XRD (using a Bruker D8 Advance diffractometer), with Cu Kα X-rays 

scanning angle 25 – 60 2θ. 
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4. Results and discussion 
 
4.1 Synthesis and properties 
 
4.1.1 Resistive heating 
 

In this work a non-catalytic method for the rapid growth of metal oxide 

NWs by oxidation under ambient conditions is proposed and elaborated. In 

order to demonstrate the simplicity and rapidness of our method we 

selected four metals: Fe, Cu, V and Zn (Figure 4.1). The successful NW 

synthesis was carried out in the 400—700 ºC range , i.e. at temperatures 

below the melting temperature of the metals used, except Zn. A resistive 

heating of the wires and foils provided uniform temperature distribution in 

their middle parts.  

 

 
Figure 4.1. The results of electron microscopy investigations of Fe2O3, CuO, V2O5 
and ZnO nanowires (NWs). Columns from left to right, respectively, show 
scanning electron micrographs of NWs, low and intermediate magnification 
transmission electron micrographs of NWs, and electron diffraction patterns with 
indexes that determined their crystal structure. 

Fe2O3

ZnO

V2O5

CuO

Fe2O3

ZnO
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The middle part of the wire (foil) surfaces was evenly covered by NWs. 

The areas in the vicinity of contacts had lower temperatures due to the heat 

losses and thereby did not contain NWs. The surface of the wire was 

oxidized and layers of metal oxides were formed (Figure 4.2). 

 

 
Figure 4.2. Scanning electron micrographs of metal oxide layers on the surface of 
different metals: a) iron; b) copper; c) zinc. 

 

SEM and TEM observations showed that the NWs produced were 

preferentially orientated perpendicular to the substrate surface. Electron 

diffraction experiments were carried out to investigate the structures of the 

NWs using their electron diffraction patterns (EDPs) and these are shown 

in Figure 4.1. Those EDPs were indexed as orthorombic Fe2O3 (a=0.503nm, 

c=1.375nm), monoclinic CuO (a=0.469nm, b=0.342nm, c=0.513nm), 

orthorhombic V2O5 (a=1.154nm, b=0.438nm, c=0.357nm) and hexagonal 

ZnO (a=0.325nm, c=0.521nm). In the case of Fe wire, blade and rod-like 

Fe2O3 NWs were synthesized (Figure 4.2). The NWs were from 1 to 5 μm 

long with the highest density on the substrate surface at synthesis 

temperatures from 690 to 720 ºC. CuO NWs with the highest density on Cu 

foils and wires were formed in the temperature range 420–480 ºC. The 

CuO NWs had rod shapes with diameters from 20 to 50 nm and with  

lengths from 0.5 to 2 μm. Resistive heating of V wires and foils at ambient 

conditions in the temperature range 450–480 ºC resulted in the highest 

density of V2O5 NWs. V2O5 NWs had rod-like structures with diameters of 

50–60 nm and lengths of 0.5–1 μm. Oxidation of Zn wire led to the 

formation of ZnO NWs in a wide temperature range from 500 to 700 ºC 

with a diverse morphology. At lower temperatures (500–600 ºC) mainly 

rod-like and belt-like NWs with diameters of 8-–20 nm and lengths of 1–10 

μm were observed; some NWs were branched. Increasing the synthesis 

temperature to about 700 ºC resulted in the formation of blade-shaped 

NWs of 1–5 μm in length. From the SEM images the highest density of 

surface coverage was observed for Fe2O3 and ZnO NWs and the lowest  for 

CuO and V2O5 NWs. 

The chemical composition of the substrate wires after the synthesis was 

evaluated by Raman spectroscopy measurements (Figure 4.3). The 

spectrum obtained from the iron oxide NWs is shown in Figure 4.3a. Peaks, 
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located at 225, 245, 292, 411, 498, 611 and 1323 cm-1, correspond to α-

Fe2O3. The presence of a small amount of Fe3O4 could be also detected as a 

peak at 663 cm-1 [61, 62]. The Raman modes originating from CuO and 

Cu2O were both observed in the spectrum measured for Cu wire (Figure 
4.3b). The peaks at about 298, 342, 633 cm-1 correspond to the Ag, Bg1 and 

Bg2 modes of CuO, respectively [63, 64]. The peaks at 219, 342, and 411 

were assigned to Cu2O. There is also a contribution from Cu2O to the band 

centered at around 633 cm-1, which makes this peak broader and more 

intense than for pure CuO [65-68]. The small shift in Raman frequency and 

profile broadening could be caused by the nanocrystalline structure [69]. 

The Raman spectrum of NWs grown on V wire showed two kinds of 

vanadium oxides with oxidation state of +5 and +4 (Figure 4.3c). Peaks at 

about 146, 194, 281, 309, 479, 525, 699, 994 cm-1 and at 403 cm-1 visible as 

shoulder could be indexed to V2O5 [70-72]. Raman modes from VO2 can be 

also seen at 222, 339, 392, 446, 498, and 614 cm-1. The peaks at 194 and 

309 cm-1 are contributed to by both V2O5 and VO2, consequently they are 

more intense [73, 74]. The Raman spectrum of zinc oxide NWs (Figure 
4.3d) reveal a peak centered at 438 cm-1, which corresponds to the E2 mode 

of ZnO [75]. The Raman scattering peak at 561 cm-1 is related to the oxygen 

deficiency in ZnO [76]. 

 

 
Figure 4.3. Raman spectra obtained from different metal oxide NWs: a) iron oxide; b) 
vanadium oxide; c) copper oxide; d) zinc oxide.
 

The chemical composition of the surface layer with NWs was confirmed 

by XPS. The chemical state of Fe wire can be determined from the Fe 2p 
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spectrum shown in Figure 4.4a. The Fe 2p3/2 maximum was found at 

approximately 710 eV and the satellite peak between the 2p3/2 and 2p1/2 

peaks around 719 eV [77]. The positions of these peaks as well as the shape 

of the Fe 2p spectrum agree closely with the Fe3+ state characterization 

reported by Aronniemi et al. [78]. The Cu 2p spectrum for copper oxide 

NWs is shown in Figure 4.4b. The observed 2p3/2 binding energy 

corresponds to CuO. The multiple peaks observed are typical for the CuO 

phase and can be interpreted as metal─ligand charge transfer satellites  [77, 

79]. XPS spectra of vanadium oxide nanorods (Figure 4.4c) show a mixture 

of different oxidation states, mainly V5+ and V4+, but also small amounts of 

V3+ could be present. An analysis of V 2p spectrum [80] revealed that the 

atomic concentrations of V5+ and V4+ as percentages of total vanadium were 

about 85% and 15%, respectively. Figure 4.4d shows the Zn 2p region and 

the LMM Auger region measured to characterize zinc oxide. The Auger 

parameter was utilized for the characterization, since the Zn and ZnO 2p 

binding energy values are very close. The Auger parameter was calculated 

as the sum of the Zn 2p3/2 binding energy and the Auger L3M45M45 kinetic 

energy to be 2010.2 eV, which is typical for ZnO [79]. The calculated atomic 

ratio of Zn and O also supports the oxidation of Zn wire to ZnO.  

 

 
Figure 4.4. X-ray photoelectron spectra obtained from different metal oxide nanowires: a) 
Fe 2p region of iron oxide sample; b) Cu 2p spectrum of copper oxide sample; c) V 2p and 
O 1s region of vanadium oxide sample with fitting; d) Zn 2p region of zinc oxide sample. 
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From TEM, Raman and XPS measurements it can be concluded that 

metal wires are covered by NWs of the corresponding metal oxide. NWs 

were indexed by EDP as Fe2O3, CuO, V2O5 and ZnO. Peaks from several 

oxides appear in Raman spectra; however, XPS shows only one metal oxide 

(except for vanadium): Fe2O3, CuO and ZnO. This can be explained by the 

different depth resolutions of these two methods. Raman depth resolution 

is in the range of a micron, whereas the XPS signal comes from only the few 

topmost atomic layers. Nevertheless, the presence of small amounts of 

lower oxidation state metal oxides on the surface cannot be excluded, as the 

sensitivity limit of XPS is about one per cent.  
For investigations of NW growth kinetics, we applied a potential 

difference to the wires (to heat them to the optimum temperature) for a 

certain period of time. After this the wires were rapidly cooled down by 

switching the power off. In the case of Fe, after only 2-4 s, α-Fe2O3 NWs of 

about 200 nm in length were found on the surface of the treated wires 

(Figure 4.5a). The growth of α-Fe2O3 NWs was therefore found to be very 

rapid and the rate was estimated to exceed 100 nm/s. A dense NW “forest” 

was produced after 40 s and no changes were observed after longer heat 

treatment times. Similar investigations carried out with Zn, V and Cu 

revealed the presence of NWs after just 10 s treatment time. 

 A non-catalytic method for the rapid growth of metal oxide NWs by  

oxidation at ambient conditions is demonstrated. This method is very 

simple and does not require any expensive and complicated equipment. In 

the simplest approach, the NWs could be grown at ambient conditions 

using a car accumulator or a set of household batteries. The NW growth 

required 2—8 watts of energy for a 3 cm long sample, which is a thousand 

times less than the energy consumed during conventional synthesis 

methods. Usually the growth of dense NW forest takes a few hours [10, 15-

19], while in our case 40 s was enough to completely cover the surface of the 

substrate. The growth rate of the iron oxide NWs exceeded 100 nm/s, which 

is to the best of our knowledge the highest rate so far reported. This high 

growth rate can be explained by the temperature profile across the wire and 

the high heating rate: in our method the wire was heated from inside and 

very quickly produced a higher temperature gradient across the wire than 

the conventional furnace oxidation techniques. Thus, the resistive heating 

method for the growth of NWs is the most simple and rapid one. 
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Figure 4.5. Scanning electron micrographs of the iron wire surface after different 
synthesis times: a) 2 s; b) 8 s; c) 15 s d) 20 s; e) 30 s; f) 35 s. 
 
4.1.2 Gas phase synthesis 
 

The aim of this sinthesis technique study was to growth tetrapods with 

high aspect ratio legs and to investigate the growth mechanism. ZnO-Ts 

were synthesized by a gas phase oxidation of Zn vapor in an air atmosphere 

in the temperature range 500 – 800 °C. At temperatures of 500 °C and 

below, only particles with diameters of 50—200 nm were produced (Figure 

4.6a). It can be seen that some particles had short tetrapod legs (inset in 

Figure 4.6a). At a temperature of 600 °C, an increase in the Zn partial 

pressure resulted in a drastic change in the particle morphology: from 

nearly spherical particles to thick and short leg tetrapod structures (Figure 

4.6b). From the leg structure one can assume the screw dislocation growth 

mechanism was operating, as was shown for ZnO nanowires [60]. A further 

increase in the temperature to 700 °C led to ZnO-Ts with high aspect ratio 

legs (diameters of 10—20 nm and lengths up to 0.5 μm) as shown in Figure 

4.6c. From the TEM image presented in Figure 4.7a it can be seen that each 
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ZnO-T leg was a single crystal. Increasing the temperature to 750 °C caused 

the formation of polycrystalline plates on ZnO-T legs (Figure 4.7b). 

 

 
Figure 4.6. Scanning electron micrographs of ZnO structures synthesized at 
different temperatures. Insets are close up images. 
 

 
Figure 4.7. High resolution-transmission electron micrographs of zinc oxide 
tetrapod legs, synthesized at: a) 700 °C, b) 750 °C. Insets are the close ups, 
showing lattice fringes. 
 
4.2 Growth mechanism 
 
4.2.1 Nanowire growth by resistive heating 
 

Resistive heating synhtesis was investigated for CuO, Fe2O3, V2O5 and ZnO 

NW, which all follow the same growth mechanism. Mechanistic growth 

a) b) 

c) d) 
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investigation was done for ZnO NWs, and growth mechanism was 

demonstrated with the example of Fe2O3 NW growth. 

 

4.2.1.1 ZnO nanowire mechanistic growth investigation 
In order to investigate the kinetics of the NW growth, we prepared 

samples of ZnO NW by resistive heating at different temperatures with a 

fixed growth time of 1 minute. The lengths of the NWs measured from SEM 

images were used for the calculations of the average growth rate (Figure 

4.8a). Two regions can be clearly distinguished in this plot: the kinetic and 

constant growth rate regions. In the kinetic region, the average NW growth 

rate increased with the temperature rise until 803 K. At higher 

temperatures the NW growth rate remained nearly constant. It is worth 

noting that the surface density of the NWs significantly decreased at higher 

temperatures. The ZnO NW shape also underwent a change in shape from 

rod-like at temperatures ≤ 803 K to sword-like at temperatures above 

850 K.  

Also, we examined the kinetics of ZnO NW growth at the fixed 

temperature of 803 K, where the growth rate is the highest. It is known that 

during Zn oxidation the ZnO layer thickens according to the parabolic law 

[81, 82], which is associated with the diffusion of Zn vacancies and 

interstitials [83]. The vacancy and interstitial migration rate rm can be 

expressed as:  
5.0�� �Arm ,          (4.1)  

where A is a coefficient of proportionality and τ is time. Plotting the 

kinetic data of the ZnO NW growth rate rg at 803 K using the coordinates ln 

rg – ln τ gives a similar linear dependence (Figure 4.9b): 

�ln5095.04721.0ln ���gr ,       (4.2) 

Consequently it can be concluded that the NW growth rate rg also has 

parabolic time dependence. This indicates that ZnO NW growth is 

determined by the migration of Zn vacancies or interstitials. 
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Figure 4.8. Kinetic data of ZnO nanowire (NW) growth: a) growth rate dependence on the 
process temperature and scanning electron micrographs of ZnO NWs at indicated 
temperatures (scale bar 500 nm); b) growth rate (µm/s) dependence on time (s) in a double 
logarithmic scale; c) kinetic region (673–803 K) data of the growth rate in the Arrhenius 
coordinates; d) schematics of ZnO NW growth mechanism. 
 

The rate of ZnO NW growth can be expressed by the Arrhenius 

dependence,  
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,        (4.3) 

where L is the length of NW; k0 is the pre-exponential coefficient; Ea is the 

activation energy of the NW growth; R is the gas constant; T is the absolute 

temperature. Furthermore, plotting the kinetic region (673–803 K) data of 

the growth rate in the Arrhenius coordinates ln rg – 1/T gives a linear 

dependence (Figure 4.8c), from which the activation energy was found to 

be Ea = 83.8 kJ/mol. This value can be attributed to the migration energy of 

the Zn interstitials and vacancies (77 and 88 kJ/mol, respectively [84]). 

Migration of oxygen interstitials is less probable because of oxygen’s larger 

size. Indeed, oxygen interstitial and vacancy migration energies are 118 and 

124 kJ/mol, respectively [84]. The activation energy for ZnO lattice 

diffusion is as high as 305 kJ/mol [82, 83] and, as a result, cannot be 

attributed to the limiting stage of the NW growth. Therefore, it can be 

deduced that the growth of ZnO NWs complies with the parabolic law and 

is determined by zinc interstitial and vacancy migration. 
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Based on the oxidation mechanism and our investigations, the following 

ZnO NW growth mechanism can be proposed. According to the metal 

oxidation mechanism [82, 84, 85] zinc oxidation involves Zn diffusion from 

the Zn-ZnO interface to the surface (Figure 4.8d). Advantageous diffusion 

through grain boundaries compared to lattice diffusion [83, 84] creates 

sites on the surface, from which ZnO NWs grow. Rod-like shaped ZnO NWs 

are created through anisotropic Zn diffusion in the direction of 

energetically favorable crystal growth [110]. The optimum growth 

conditions for a dense ZnO NW “forest” occur at 803 K. At temperatures ≥ 

850 K, the size of the ZnO grains becomes larger [86], so that there is less 

grain boundary space for rapid diffusion to occur. This is confirmed from 

SEM images as the density of ZnO NWs on the surface at temperatures 

above 803 K is lower.  

The growth of the ZnO NWs is also determined by the presence of defects 

such as stacking faults. The amount of the synthesized NWs was drastically 

reduced when the temperature was above 803 K, which is likely to be 

explained by the formation of the NWs with higher crystallinity. TEM and 

PL investigations confirmed the presence of fewer defects and lower surface 

NW density at higher synthesis temperatures. However, the annealing of 

ZnO NWs at high temperatures should not be neglected, since NWs appear 

on the surface after only 10 s. 

 

4.2.1.2 Nanowire growth mechanism by resistive heating method 
The mechanism for metal oxide NW growth was obtained on the basis of 

our experimental results and literature data. Growth mechanism is similar 

for all NWs grown by resistive heating method, and it is demonstrated 

taking Fe2O3 as an example. The formation of NW occurs when oxide layers 

are gradually formed by oxidation of the metal (Figure 4.2.). The growth of 

NWs is determined by diffusion processes. The driving force determining 

the motion of metal and oxygen ion species is the potential difference that 

appears during the wire oxidation process (Figure 4.9). The electric field 

strength between iron and Fe2O3 layers can reach values as large as 106 

V/cm [87]. It is worth noting the electric field arising during resistive 

heating of an iron wire is about six orders of magnitude lower and thereby 

cannot significantly affect the ion motion across the wire. The metal 

oxidation process involves the diffusion of metal ions from the iron wire 

core to the surface through the metal oxide layers and of oxygen ions in the 

opposite direction [87, 88]. At certain temperatures, grain boundaries in 

the metal oxide layers, likely formed due to the oxidation stress, could be 

responsible for a higher diffusion rate compared to the lattice diffusion 

[88]. In the initial stage, the Fe2O3 phase might grow in all directions; 
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however, only the [110] crystallographic direction endures due to its 

energetically favorable conditions [28], such as easier diffusion and 

advantageous stacking. It is worth noting that the presence of stacking 

faults in the growth direction supports our explanation of the mechanism, 

since the diffusion rate is enhanced in the crystal defects at elevated 

temperatures [89, 90]. Another path for iron ion delivery to the top of the 

growing NW is surface diffusion. The NW sword-like shape confirms that 

the growth is determined by diffusion process from the bottom, where the 

NWs are thicker, to the top, where they become thinner. The growth of NW 

terminates as metal oxide layers become too thick for charge transfer or ion 

diffusion. Typical length of NWs grown by resistive growth method is 1 to 5 

μm for synthesis time of 3 min. The same growth mechanism is valid also 

for other metal oxidation synthesis techniques.  

 

 
Figure 4.9. Schematic presentation of the nanowire growth in ambient air conditions. 

 

4.2.1 ZnO tetrapod growth mechanism 
 

The growth of tetrapod structures of ZnO [91] and other II-IV 

semiconductors [92] has been explained by the formation of the zinc blende 

nucleus, out of which wurtzite legs grow [93]. The formation of such highly 

anisotropic shapes as tetrapods requires a kinetic growth regime where the 

rate of the monomer arrival is greater than its diffusion on the surface [92, 

94]. At low growth rates, under thermodynamic control, spherical 

nanocrystals are formed. When the growth rate is increased, preferential 

growth at most reactive sites is expected. 
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Figure 4.10. Morphology of zinc oxide tetrapods at different temperatures and 
vapor pressures. Tetrapods shown are not to scale. 
 

The overall trend in morphological change of the ZnO-Ts is summarized 

in Figure 4.10. From our experimental data one can see that at 500 °C there 

is not significantkinetic growth — only very few particles had anisotropic 

growth sites and grew short tetrapod legs. At 600 °C, the Zn partial 

pressure increased and a higher growth rate and anisotropic structures are 

observed (Figure 4.6b). However, even at 600 °C, the Zn vapor pressure is 

low, which favors a higher nucleus diameter and also a lower kinetic growth 

rate, and consequently resulted in ZnO-T structures with low aspect ratios. 

At 700 °C highly anisotropic structures were obtained because of the high 

Zn vapor pressure, favoring small nucleus diameters and fast kinetic 

growth. When the temperature was further increased, a large number of 

small diameter particles were produced, which further aggregated into 

polycrystalline plates (Figure 4.6d and Figure 4.7b) having a nearly ordered 

structure in one direction. Such spontaneous oriented attachment of 

primary particles is explained by oriented aggregation, which is caused by a 

substantial reduction in the surface free energy [95, 96]. 

 
4.3 Applications 
 

FE applications of NW grown by resistive heating and UV sensor 

applications of ZnO-T grown by gas phase synthesis are shown in this 

section. 

  

4.3.1 Field emission 
 

FE is emission of electrons induced by an electrostatic field, usually from a 

solid surface into a vacuum. FE occurs in high electric fields and is strongly 

dependent upon the work function. Needle-like nanoscale arrays are 



27 
 

expected to possess low voltage field electron emission properties due to the 

electric field enhancement effect on the nanostructured tips [97]. 
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Figure 4.11. Field emission properties of metal oxide nanowires (NWs): a) typical 
images of the field emission pattern (frame size 5�5 mm) on the luminescent 
screen for the copper foil (top), copper wire (center) and iron wire (bottom); b) 
current density versus electric field strength (J-E) for the samples with different 
types of metal oxide NWs. The solid lines are the Fowler─Nordheim 
approximations of the experimental points. 

 

For measurements of FE properties the samples were placed in a vacuum 

diode FE set-up and used as cathodes. The FE current–voltage 

characteristics were obtained by applying a pulsed voltage between 

electrodes up to 10 kV with a pulse duration of about 15 μs and with a 

repetition frequency of 200 Hz. The middle parts of the foils or wires 1 cm 

long were mounted on steel substrates parallel to a flat anode. To 

characterize the spatial distribution of the emission sites over the sample 

surface a conductive cathodoluminescent screen was used as the anode. The 

distance between electrodes was varied from 100 to 500 μm with a high 

precision screw translator. 

The samples were used without any pretreatment as cathodes in a vacuum 

diode FE setup. In order to compare the results obtained for different 

samples the current-voltage (I-V) curves were converted to current density 

dependencies on an electric field (J-E). The electric field intensity, E, in the 

diode was defined as a ratio of the applied voltage, V, to the inter-electrode 

distance. The current density, J, is defined as a ratio of the cathode current, 

aa)) bb)) CCuu  ffooiill  

CCuu  wwiirree  

FFee  wwiirree  
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I, to the emitting cathode area, estimated from the emission pattern on the 

luminescent screen. The FE patterns obtained for the wires and foils were 

quite homogeneous for all types of metal oxide samples (Figure 4.11a). The 

J-E dependencies of samples with NWs are presented in Figure 4.11b. The 

approximation of J-E curves with the Fowler—Nordheim equation gives a 

good agreement with the tunneling mechanism of emission [98].  

The samples with CuO NWs showed the best FE characteristics. The 

threshold field value corresponding to the current density of 0.01 mA/cm2 

was about 4 V/�m. The maximum current density for samples with CuO 

NWs was about 100 mA/cm2. These parameters are comparable with the 

best FE characteristics reported for different metal oxides structures in Refs 

[99-102]. V2O5, ZnO and Fe2O3 NWs have higher threshold fields and lower 

maximum current densities, as can be seen in Figure 4.11. 

FE measurements of the NWs produced revealed the enhanced electron 

emissive properties of the NWs, especially for CuO. Also a significant 

difference in the FE properties was observed, which can not be explained 

based on the macroscopic properties of the metal oxides. The work function 

of the oxide materials varied from 5 to 6 eV. This difference in work 

function value is not enough to explain the variation in the FE behavior. 

Therefore, the alteration in FE property should be explained by the NW 

morphology, i.e. by the shape of the individual NWs and their spatial 

density. The different metal oxide NWs observed in SEM and TEM have 

very similar quasi 1D shapes (either rod or needle-like structures). 

Therefore the enhancement factor and the field penetration effect for 

individual NWs should be similar. The main difference in the morphology, 

which can explain the difference in the FE efficiency, appeared to be the 

spatial density of NWs on the surface. It is interesting to note that ZnO and 

Fe2O3 NWs, which were synthesized with the highest NW density, showed 

the worst FE properties. In contrast, V2O5 and CuO NWs which 

demonstrated the highest FE efficiency were less uniform and had smaller 

NW density. As was reported previously [97], the highest current density 

corresponded to the optimum distance between emitters, which is a double 

emitter height. In other words, for the best electron emitting properties the 

distance between the NWs should be two times larger than their length. 

Therefore, in the case of ZnO and Fe2O3 NWs, the field enhancement factor 

for each emitter (NW) was significantly reduced due to the screening effect 

[97]. The difference in the emission site densities of different materials can 

be clearly seen in the FE patterns (Figure 4.11). Thus, the FE properties of 

the metal oxide NW samples are mainly determined by the spatial density 

of the NWs on the sample surface. It is worth noting that the efficient FE 
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from the metal oxide NWs examined is very promising for applications in 

vacuum electronic devices.  

 
4.3.2 UV sensors 
 
The UV-sensing phenomenon originates from the alteration of the charge 

carrier density. Under UV-light irradiation with a higher energy than the 

band gap of ZnO, the charge carrier density is increased, which reduces the 

resistance of the ZnO-Ts. When UV illumination is switched off, the oxygen 

chemisorption process dominates and assists photoconductivity relaxation 

[103]. 

 

 

      

Figure 4.12. Zinc oxide tetrapods ultraviolet (UV) sensor: a) schematics of UV response 
measurement; b) a photo of the sensor; c) the sensor response to excitation at 365 nm. 

 

The UV sensor response was measured using a digital oscilloscope 

(Tektronix DPO 2014) by a comparison method, where the magnitudes of a 

reference resistor and the UV sensor were compared by the voltage drop 

they inflicted on the circuit (Figure 4.12a). A constant potential (20 V) was 

applied over the UV sensor and a reference resistor (500 GΩ) connected in 

series. The voltage drop over the reference resistor was recorded in time 

while the UV illumination was turned on and off. Current flowing through 

the circuit was later resolved by applying Kirchhoff's law. 

A flexible transparent UV sensor (Figure 4.12b) was made by drying a 

droplet of ZnO-T solution in ethanol between two transparent single-wall 

carbon nanotube (SWCNT) film contacts, on a polyethylene terephthalate 

(PET) substrate. SWCNT electrode fabrication is described in Refs [104, 

a) 

c) b) 
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105]; in short, a one-step process was used, whereby filtered SWCNTs 

without any post processing were transferred from a filter by pressing it 

onto a PET substrate. To obtain high optical transparency, sample 

synthesized at yMg = 2.3% and SWCNT electrodes with 95% transparency 

were used. UV sensing experiments were carried out under UV intensity of 

30 μW/cm2 at a wavelength of 365 nm. Fig. 8c shows the UV sensor 

response to the illumination. The initial current of 0.032 pA increased to 

1.45 pA under the UV illumination, which is a 45 fold change. The response 

time to 90% of the current change was 0.9 s.  

Our UV sensor configuration leads to potential barriers formed at the 

interfaces and junctions in the device (Figure 4.13), namely: i) SWCNT 

electrode and ZnO-T junction, ii) multiple ZnO-T leg to leg junctions, iii) 

interface between ZnO wurtzite legs and zinc blende core. The work 

function of the SWCNT electrode is 4.8 eV [106], and the electron affinity of 

ZnO is 4.5 eV [107], so a Schottky barrier between ZnO-Ts and SWCNTs is 

formed. Depletion layers at the ZnO-T leg surface induced by electron 

trapping form another multiple leg to leg potential barrier. The interface 

between the wurtzite legs and zinc blende core may also play a role in the 

transport mechanism as the contact barrier at the interface might lead to 

higher resistance; on the other hand, the volume of the zinc blende core can 

be negligibly small and make no considerable influence.  
 

 

  
 
Figure 4.13. Schematics of barriers on zinc oxide tetrapods ultraviolet (UV) sensor 
percolation path: a) no UV illumination; b) under UV. CB and VB mean conduction and 
valance band, respectively. 

 

The high performance of the device, comparing to single ZnO-T ohmic 

contact sensors [103, 108], is associated with the multiple barriers. The 

local electric field at the barrier area reduces the electron—hole 

recombination rates, resulting in an increase in free carrier density. 

Moreover, the UV-illumination-induced desorption of oxygen at the 

boundary changes the barrier height and narrows the barrier width, and 

Under UV No UV 
a) b) 
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also improves UV sensitivity. Rapid photocurrent response and recovery is 

related to quick changes in the interfacial region, instead of the whole 

surface [109, 110]. It is also known that the higher the potential barrier, the 

faster the current recovery [111]. 

Response measurements show that such a photosensor is suitable for 

detection of low levels of UV light. Moreover the high resistance of 60 TΩ in 

the off state shows great potential for practical application in UV sensing. 
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6. Conclusions 
 

A simple, rapid and inexpensive method for metal oxide NW growth based 

on the resistive heating of metals under ambient conditions was proposed 

and developed. As a result, Fe2O3, CuO, V2O5 and ZnO NWs were 

synthesized and thoroughly characterized. Fe2O3 NW formation was 

detected after only 2 s of heating; other metal oxide NWs were grown after 

10 s. It was found that Fe2O3 NWs grew in the [110] crystallographic 

direction and contained stacking faults along the NW direction. The α-

Fe2O3 NW growth rate under ambient conditions at 700 °C was found to 

exceed 100 nm/s.  

The ZnO NW growth mechanism was investigated in the 400–850 °C 

temperature range . The highest ZnO NW growth rate was observed at 530 

°C. It was found that the direction of the ZnO NW growth occurred along 

[110]. The growth rate showed parabolic dependence, which was explained 

by the Zn interstitial and vacancy migration. The ZnO NW growth 

activation energy Ea=83.8 kJ/mol, obtained from the Arrhenius plot, 

confirmed this result. The Zn interstitial and vacancy migration were 

deduced to be the limiting stage of the ZnO NWs growth. 

The mechanism of metal oxide NW growth by oxidation is based on the 

diffusion of metal ions to the surface of the wire through grain boundaries 

and to the tip of the growing NW through defect diffusion and by surface 

diffusion. The growth mechanism was demonstrated for ZnO and Fe2O3 

NWs, but it is also valid for the growth of other metal oxide NWs 

investigated in this work, namely CuO and V2O5. 

Field emission from NWs, grown by the resistive heating method, 

exhibited promising results for applications in vacuum electronic devices. 

Cold electron FE measurements showed that CuO NWs have a very low 

threshold field of 4 V/�m at 0.01 mA/cm2. The FE efficiency decrease for 

samples with a higher spatial density of NWs was explained by the 

screening effect. 

A vertical flow reactor was designed and constructed for the controlled 

synthesis of ZnO-T structures. It was shown that the morphology of ZnO-Ts 

could be adjusted by Zn vapor pressure in the reactor by changing the 

evaporation temperature. The highest aspect ratio of ZnO-T legs was 

obtained at 700 °C and a Zn partial vapor pressure of 0.08 atm. Highly 

anisotropic structures were obtained because of the high Zn vapor pressure, 

favoring small nucleus diameters and fast kinetic growth. ZnO-Ts 

demonstrated the potential for application in transparent and flexible UV 

sensors and showed a 45-fold current increase under UV irradiation with an 
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intensity of 30 μW/cm2 at a wavelength of 365 nm, and a response time of 

0.9 s. The high performance of the device was explained by the multiple 

contact barriers. 
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Nanowires (NWs), exhibit extraordinary 
properties, distinctive from the bulk 
material, and therefore are an excellent 
material for nanoscale applications. The 
vast majority of methods for NW fabrication 
use catalysts, however, catalyst-free 
methods offer the facile fabrication of pure 
nanowires with fewer technological steps. 
For the development of non-catalytic 
techniques an understanding of the growth 
mechanism is crucial. The aim of this thesis 
was to propose and to develop novel 
techniques for the non-catalytic synthesis of 
metal oxide NWs, to examine their 
structures and properties, and to investigate 
their growth mechanisms and potential 
applications. Two different approaches were 
applied for the synthesis: metal resistive 
heating and vapor growth methods. The NW 
growth mechanism during the metal 
oxidation was studied. The vapor growth 
method was utilized for the synthesis of ZnO 
tetrapods. The synthesized NWs were 
examined for field emission (FE) and 
ultraviolet (UV) sensing applications. 
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