135 research outputs found

    MuPlex: multi-objective multiplex PCR assay design

    Get PDF
    We have developed a web-enabled system called MuPlex that aids researchers in the design of multiplex PCR assays. Multiplex PCR is a key technology for an endless list of applications, including detecting infectious microorganisms, whole-genome sequencing and closure, forensic analysis and for enabling flexible yet low-cost genotyping. However, the design of a multiplex PCR assays is computationally challenging because it involves tradeoffs among competing objectives, and extensive computational analysis is required in order to screen out primer-pair cross interactions. With MuPlex, users specify a set of DNA sequences along with primer selection criteria, interaction parameters and the target multiplexing level. MuPlex designs a set of multiplex PCR assays designed to cover as many of the input sequences as possible. MuPlex provides multiple solution alternatives that reveal tradeoffs among competing objectives. MuPlex is uniquely designed for large-scale multiplex PCR assay design in an automated high-throughput environment, where high coverage of potentially thousands of single nucleotide polymorphisms is required. The server is available at

    MuPlex: multi-objective multiplex PCR assay design

    Get PDF
    We have developed a web-enabled system called MuPlex that aids researchers in the design of multiplex PCR assays. Multiplex PCR is a key technology for an endless list of applications, including detecting infectious microorganisms, whole-genome sequencing and closure, forensic analysis and for enabling flexible yet low-cost genotyping. However, the design of a multiplex PCR assays is computationally challenging because it involves tradeoffs among competing objectives, and extensive computational analysis is required in order to screen out primer-pair cross interactions. With MuPlex, users specify a set of DNA sequences along with primer selection criteria, interaction parameters and the target multiplexing level. MuPlex designs a set of multiplex PCR assays designed to cover as many of the input sequences as possible. MuPlex provides multiple solution alternatives that reveal tradeoffs among competing objectives. MuPlex is uniquely designed for large-scale multiplex PCR assay design in an automated high-throughput environment, where high coverage of potentially thousands of single nucleotide polymorphisms is required. The server is available at

    Computational tradeoffs in multiplex PCR assay design for SNP genotyping

    Get PDF
    BACKGROUND: Multiplex PCR is a key technology for detecting infectious microorganisms, whole-genome sequencing, forensic analysis, and for enabling flexible yet low-cost genotyping. However, the design of a multiplex PCR assays requires the consideration of multiple competing objectives and physical constraints, and extensive computational analysis must be performed in order to identify the possible formation of primer-dimers that can negatively impact product yield. RESULTS: This paper examines the computational design limits of multiplex PCR in the context of SNP genotyping and examines tradeoffs associated with several key design factors including multiplexing level (the number of primer pairs per tube), coverage (the % of SNP whose associated primers are actually assigned to one of several available tube), and tube-size uniformity. We also examine how design performance depends on the total number of available SNPs from which to choose, and primer stringency criterial. We show that finding high-multiplexing/high-coverage designs is subject to a computational phase transition, becoming dramatically more difficult when the probability of primer pair interaction exceeds a critical threshold. The precise location of this critical transition point depends on the number of available SNPs and the level of multiplexing required. We also demonstrate how coverage performance is impacted by the number of available snps, primer selection criteria, and target multiplexing levels. CONCLUSION: The presence of a phase transition suggests limits to scaling Multiplex PCR performance for high-throughput genomics applications. Achieving broad SNP coverage rapidly transitions from being very easy to very hard as the target multiplexing level (# of primer pairs per tube) increases. The onset of a phase transition can be "delayed" by having a larger pool of SNPs, or loosening primer selection constraints so as to increase the number of candidate primer pairs per SNP, though the latter may produce other adverse effects. The resulting design performance tradeoffs define a benchmark that can serve as the basis for comparing competing multiplex PCR design optimization algorithms and can also provide general rules-of-thumb to experimentalists seeking to understand the performance limits of standard multiplex PCR

    Biological context networks: a mosaic view of the interactome

    Get PDF
    Network models are a fundamental tool for the visualization and analysis of molecular interactions occurring in biological systems. While broadly illuminating the molecular machinery of the cell, graphical representations of protein interaction networks mask complex patterns of interaction that depend on temporal, spatial, or condition-specific contexts. In this paper, we introduce a novel graph construct called a biological context network that explicitly captures these changing patterns of interaction from one biological context to another. We consider known gene ontology biological process and cellular component annotations as a proxy for context, and show that aggregating small process-specific protein interaction sub-networks leads to the emergence of observed scale-free properties. The biological context model also provides the basis for characterizing proteins in terms of several context-specific measures, including ‘interactive promiscuity,' which identifies proteins whose interacting partners vary from one context to another. We show that such context-sensitive measures are significantly better predictors of knockout lethality than node degree, reaching better than 70% accuracy among the top scoring proteins

    Effects of systematic asymmetric discounting on physician-patient interactions: a theoretical framework to explain poor compliance with lifestyle counseling

    Get PDF
    BACKGROUND: This study advances the use of a utility model to model physician-patient interactions from the perspectives of physicians and patients. PRESENTATION OF THE HYPOTHESIS: In cases involving acute care, patient counseling involves a relatively straightforward transfer of information from the physician to a patient. The patient has less information than the physician on the impact the condition and its treatment have on utility. In decisions involving lifestyle changes, the patient may have more information than the physician on his/her utility of consumption; moreover, differences in discounting future health may contribute significantly to differences between patients' preferences and physicians' recommendations. TESTING THE HYPOTHESIS: The expectation of differences in internal discount rate between patients and their physicians is discussed. IMPLICATIONS OF THE HYPOTHESIS: This utility model provides a conceptual basis for the finding that educational approaches alone may not effect changes in patient behavior and suggests other economic variables that could be targeted in the attempt to produce healthier behavior

    The COMBREX Project: Design, Methodology, and Initial Results

    Get PDF
    © 2013 Brian P. et al.Prior to the “genomic era,” when the acquisition of DNA sequence involved significant labor and expense, the sequencing of genes was strongly linked to the experimental characterization of their products. Sequencing at that time directly resulted from the need to understand an experimentally determined phenotype or biochemical activity. Now that DNA sequencing has become orders of magnitude faster and less expensive, focus has shifted to sequencing entire genomes. Since biochemistry and genetics have not, by and large, enjoyed the same improvement of scale, public sequence repositories now predominantly contain putative protein sequences for which there is no direct experimental evidence of function. Computational approaches attempt to leverage evidence associated with the ever-smaller fraction of experimentally analyzed proteins to predict function for these putative proteins. Maximizing our understanding of function over the universe of proteins in toto requires not only robust computational methods of inference but also a judicious allocation of experimental resources, focusing on proteins whose experimental characterization will maximize the number and accuracy of follow-on predictions.COMBREX is funded by a GO grant from the National Institute of General Medical Sciences (NIGMS) (1RC2GM092602-01).Peer Reviewe

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A Triple Test for Behavioral Economics Models and Public Health Policy

    Full text link

    Eating and drinking: An economic analysis

    No full text
    Food-deprived rats were exposed to various schedules of food delivery; water-deprived rats were exposed to various schedules of water delivery. Eating and drinking were measured over sessions and at points throughout sessions. The symmetries and asymmetries of food and water consumption were explored in terms of: (1) substitutability of food versus water, and of food and water on the one hand versus leisure on the other, (2) constraints imposed by various schedules of food and water, and (3) the tendency of rats to maximize utility within the imposed constraints
    corecore