9 research outputs found

    The influence of the atmospheric refractive index on radio Xmax measurements of air showers

    Get PDF
    The refractive index of the atmosphere, which is n ≈ 1:0003 at sea level, varies with altitude and with local temperature, pressure and humidity. When performing radio measurements of air showers, natural variations in n will change the radio lateral intensity distribution, by changing the Cherenkov angle. Using CoREAS simulations, we have evaluated the systematic error on measurements of the shower maximum Xmax due to variations in n. It was found that a 10% increase in refractivity (n - 1) leads to an underestimation of Xmax between 8 and 22 g/cm2 for proton-induced showers at zenith angles from 15 to 45 degrees, respectively

    Cosmic Ray Mass Measurements with LOFAR

    Get PDF
    In the dense core of LOFAR individual air showers are detected by hundreds of dipole antennas simultaneously. We reconstruct Xmax by using a hybrid technique that combines a two-dimensional fit of the radio profile to CoREAS simulations and a one-dimensional fit of the particle density distribution. For high-quality detections, the statistical uncertainty on Xmax is smaller than 20 g/cm2. We present results of cosmic-ray mass analysis in the energy regime of 1017 - 1017.5 eV. This range is of particular interest as it may harbor the transition from a Galactic to an extragalactic origin of cosmic rays

    TEC, Trigger and Check, preparing LOFAR for Lunar observations

    Get PDF
    One of the main ways to use radio to detect Ultra High Energy Neutrinos and Cosmic Rays is the Lunar Askaryan technique, that uses the Moon as a target and searches for nanosecond pulses with large radio telescopes. To use low frequency aperture arrays, such as LOFAR and the SKA, pose new challenges and possibilities in detection techniques of short radio pulses and to measure the Total Electron Content (TEC). As a prepatory work, we have used other measurements that use similar techniques, or that can answer a specific question, with the LOFAR radio telescope. This contribution reports on our work on triggering on short radio signals, post-event imaging of radio signals from buffered data and methods to determine the TEC-value

    Towards real-time identification of cosmic rays with LOw-Frequency ARray radio antennas

    No full text
    Cosmic rays entering the Earth’s atmosphere produce Extensive Air Showers, which emit a radio signal through Geo-magnetic radiation and Askaryan emission. At the present time, one of the biggest challenges for assessing the Radio detection as a valuable technique for Cosmic-ray observation is to identify in real-time the very short (less than 100 ns) radio signals over the background noise. In this work, we present the latest updates on the real-time identification of radio signals from Extensive Air Showers by using the data from LOFAR Low Band Antenna stations, which are sensitive in the 30-80 MHz region

    The influence of the atmospheric refractive index on radio Xmax measurements of air showers

    No full text
    The refractive index of the atmosphere, which is n ≈ 1:0003 at sea level, varies with altitude and with local temperature, pressure and humidity. When performing radio measurements of air showers, natural variations in n will change the radio lateral intensity distribution, by changing the Cherenkov angle. Using CoREAS simulations, we have evaluated the systematic error on measurements of the shower maximum Xmax due to variations in n. It was found that a 10% increase in refractivity (n – 1) leads to an underestimation of Xmax between 8 and 22 g/cm2 for proton-induced showers at zenith angles from 15 to 45 degrees, respectively

    Cosmic Ray Mass Measurements with LOFAR

    No full text
    In the dense core of LOFAR individual air showers are detected by hundreds of dipole antennas simultaneously. We reconstruct Xmax by using a hybrid technique that combines a two-dimensional fit of the radio profile to CoREAS simulations and a one-dimensional fit of the particle density distribution. For high-quality detections, the statistical uncertainty on Xmax is smaller than 20 g/cm2. We present results of cosmic-ray mass analysis in the energy regime of 1017 - 1017.5 eV. This range is of particular interest as it may harbor the transition from a Galactic to an extragalactic origin of cosmic rays

    TEC, Trigger and Check, preparing LOFAR for Lunar observations

    No full text
    One of the main ways to use radio to detect Ultra High Energy Neutrinos and Cosmic Rays is the Lunar Askaryan technique, that uses the Moon as a target and searches for nanosecond pulses with large radio telescopes. To use low frequency aperture arrays, such as LOFAR and the SKA, pose new challenges and possibilities in detection techniques of short radio pulses and to measure the Total Electron Content (TEC). As a prepatory work, we have used other measurements that use similar techniques, or that can answer a specific question, with the LOFAR radio telescope. This contribution reports on our work on triggering on short radio signals, post-event imaging of radio signals from buffered data and methods to determine the TEC-value
    corecore