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Abstract. One of the main ways to use radio to detect Ultra High Energy Neutrinos and
Cosmic Rays is the Lunar Askaryan technique, that uses the Moon as a target and searches
for nanosecond pulses with large radio telescopes. To use low frequency aperture ar-
rays, such as LOFAR and the SKA, pose new challenges and possibilities in detection
techniques of short radio pulses and to measure the Total Electron Content (TEC). As a
prepatory work, we have used other measurements that use similar techniques, or that can
answer a specific question, with the LOFAR radio telescope. This contribution reports on
our work on triggering on short radio signals, post-event imaging of radio signals from
buffered data and methods to determine the TEC-value.

1 Introduction

One of the ways to determine the flux and direction of ultra high energy (UHE; > 1018 eV) cosmic
particles (cosmic rays and neutrinos ) is to point a large radio telescope to the Moon to search for
nanosecond pulses induced by lunar showers from these particles following the Askaryan effect [1].
Previous measurements with radio telescopes such as Parkes [2–4] and WSRT [5, 6] have developed
these techniques and set limits to the flux of these particles. However, it requires even larger tele-
scopes, such as the SKA [7] or FAST, to be sensitive to the known cosmic ray flux. To set better
limits and to test the techniques used for a distributed telescope such as the SKA, we are working on
a method to search for ultra high energy cosmic particles with LOFAR, within the NuMoon project.
The proceedings by T. Winchen gives an introduction to this subject and deals with re-obtaining a
high time resolution signal to search for these pulses. This proceeding reports on two other challenges
faced in this project: The influence on the ionosphere and the verification of observed pulses.
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2 LOFAR

LOFAR [8] is a low frequency radio telescope that consists of stations with fields with antennas
distributed on relative distances of 10s of meters up to 100s of kilometers. The antennas of each
field are combined to form one or more beams on the sky with a size of a few degrees. NuMoon
observations cover 110-190 MHz. By combining the beams of the inner 24 stations, the moon can
be covered with 50 beams to search for nanosecond signals induced by lunar showers from ultra
high energy cosmic particles. In addition, the data from each antenna is stored in a ring buffer for 5
seconds. If a trigger is received within this time, the data can be read out to disk for further analysis.

2.1 Ionospheric corrections

The first challenge is the correction of the ionosphere. The free electrons in the ionosphere cause a
dispersion in the arrival time of the signal of different frequencies, with the relation

τ[ns] = k STEC/ν2 = 1.34 · STEC/ν2 with STEC =

∫
ne(s)ds (1)

with ν the observing frequency in GHz. In this STEC is the Slanted Total Electron Content following
the integrated electron density along a slanted path in TEC units (TECU) of 1016 electrons / m2. This
dispersion causes the signal to be spread out over 10s of nanoseconds [Fig. (1)]. lowering the peak
amplitude. This effect needs to be corrected, to be able to detect pulses induced by cosmic particles.
A second effect is Faraday rotation, in which the polarisation angle of a polarised source changes over
frequency according to

β = RMλ2 (2)

where λ is the wavelength in meters and the rotation measure

RM =
e3

2πm2
eε0c3

∫ d

0
ne(s)B‖(s)ds, (3)

in which B‖ is the magnetic field parallel to the line of sight, e the charge of an electron, c the speed
of light in vacuum, me the mass of an electron and ε0 is the vacuum permittivity, all in SI units. The
Faraday rotation is easy to measure at low frequencies. If the magnetic field is known, this gives a
measurement of the TEC value. [9] give a comparison in the measured RM variation of pulsars, as
observed by LOFAR, with predicted values based on TEC and B values. This method may be used by
observing pulsars in parallel or using the polarized rim of the Moon in online or offline analysis [10],
and using the known B field to predict TEC values. With astronomical measurements differential1

Faraday Rotation and differential TEC can be obtained with high precision, but the uncertainty in the
differential magnetic field makes it difficult to obtain the absolute TEC value. An alternative approach
is to use GPS data directly. The current maps are only available days later and have a temporal res-
olution of 2 hours and a spatial resolution of 2.5 x 2.5 degrees, but for the trigger real-time data is
required. However, the Space Radio-Diagnostics Research Centre of the University of Warmia and
Mazury and the UPC-IonSAT research group of the Technical University of Catalonia are currently
developing algorithms to provide real-time high resolution TEC maps, specifically for the ILT (Inter-
national LOFAR Telescope), using 119 Euref Permanent Network stations [11–13]. In the result, near
real-time and high-spatial resolution maps are obtained at 15 minutes in temporal resolution and 0.5
degree in latitudinal and longitudinal spatial resolution, (Fig. (2)), with the possibility of obtaining

1Between two different positions 1-1000 km apart
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even higher temporal resolution. The biggest challenge here is still to get to an absolute TEC value,
as there is a bias due to the ambiguous 2π phase shifts, as well as the slant to vertical TEC conversion,
because of the unknown height of the ionosphere (see e.g.[14]). The lower uncharged atmosphere
influences the signal only by a frequency independent delay. Therefore, its expected influence on the
peak height of the signal, as well as on GPS-driven TEC measurements is negligible.

Figure 1. Left: Input pulse in red, dispersed pulse in black, with an ionospheric ionisation of 10 TECU., Right:
Sky image from 6 LOFAR core stations of a dedispersed pulse of pulsar B0329+54 from TBB data obtained from
triggering in real-time on beam formed data.

Figure 2. A comparison between the IGS global ionospheric maps [15] - on the left vs rapid ILT dedicated maps
- on the right.

2.2 Pulse verification

The second challenge is the verification of pulses. For this we intend to read out the buffers from
individual antennas. With this data we can check that it was not a single antenna or station creating
the signal and check that the real direction is indeed coming from the Moon and not an off-beam
satellite or terrestrial signal. We can further perform a better TEC correction to the pulse, and see for
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example if a 2x TEC value (as would be from a reflected signal) will give an even stronger signal. The
technique of triggering the buffers and analysing the data was earlier performed in an astronomical
context [16], to search for fast radio transients, such as pulsar pulses and the new class of fast radio
bursts [17]. In this context a pulse of pulsar B0329+54 was localised [Fig. (1)], a strange signal was
identified as an off-beam solar flare, and a signal was identified as coming from a single antenna.

3 Conclusion
The detection of ultra high energy cosmic particles, using the Askaryan techniques, remains challeng-
ing for telescopes such as LOFAR and SKA. But with the LOFAR observations and tests described
here we are two steps closer to run successful observation in this or the next decade.
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