81 research outputs found
Recommended from our members
Redox-dependent gating of VDAC by mitoNEET.
MitoNEET is an outer mitochondrial membrane protein essential for sensing and regulation of iron and reactive oxygen species (ROS) homeostasis. It is a key player in multiple human maladies including diabetes, cancer, neurodegeneration, and Parkinson's diseases. In healthy cells, mitoNEET receives its clusters from the mitochondrion and transfers them to acceptor proteins in a process that could be altered by drugs or during illness. Here, we report that mitoNEET regulates the outer-mitochondrial membrane (OMM) protein voltage-dependent anion channel 1 (VDAC1). VDAC1 is a crucial player in the cross talk between the mitochondria and the cytosol. VDAC proteins function to regulate metabolites, ions, ROS, and fatty acid transport, as well as function as a "governator" sentry for the transport of metabolites and ions between the cytosol and the mitochondria. We find that the redox-sensitive [2Fe-2S] cluster protein mitoNEET gates VDAC1 when mitoNEET is oxidized. Addition of the VDAC inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) prevents both mitoNEET binding in vitro and mitoNEET-dependent mitochondrial iron accumulation in situ. We find that the DIDS inhibitor does not alter the redox state of MitoNEET. Taken together, our data indicate that mitoNEET regulates VDAC in a redox-dependent manner in cells, closing the pore and likely disrupting VDAC's flow of metabolites
Phylogenetic analysis of eukaryotic NEET proteins uncovers a link between a key gene duplication event and the evolution of vertebrates
NEET proteins belong to a unique family of iron-sulfur proteins in which the 2Fe-2S cluster is coordinated by a CDGSH domain that is followed by the “NEET” motif. They are involved in the regulation of iron and reactive oxygen metabolism, and have been associated with the progression of diabetes, cancer, aging and neurodegenerative diseases. Despite their important biological functions, the evolution and diversification of eukaryotic NEET proteins are largely unknown. Here we used the three members of the human NEET protein family (CISD1, mitoNEET; CISD2, NAF-1 or Miner 1; and CISD3, Miner2) as our guides to conduct a phylogenetic analysis of eukaryotic NEET proteins and their evolution. Our findings identified the slime mold Dictyostelium discoideum’s CISD proteins as the closest to the ancient archetype of eukaryotic NEET proteins. We further identified CISD3 homologs in fungi that were previously reported not to contain any NEET proteins, and revealed that plants lack homolog(s) of CISD3. Furthermore, our study suggests that the mammalian NEET proteins, mitoNEET (CISD1) and NAF-1 (CISD2), emerged via gene duplication around the origin of vertebrates. Our findings provide new insights into the classification and expansion of the NEET protein family, as well as offer clues to the diverged functions of the human mitoNEET and NAF-1 proteins
The impact of multifactorial stress combination on plant growth and survival
Article studying seedlings of wild-type and different mutants of Arabidopsis thaliana plants subjected to a multifactorial stress combination of six different stresses, each applied at a low level, and their survival, physiological and molecular responses. Findings reveal that further polluting our environment could result in higher complexities of multifactorial stress combinations that in turn could drive a critical decline in plant growth and survival
NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth
Mitochondria are emerging as important players in the transformation
process of cells, maintaining the biosynthetic and energetic
capacities of cancer cells and serving as one of the primary sites of
apoptosis and autophagy regulation. Although several avenues of
cancer therapy have focused on mitochondria, progress in developing
mitochondria-targeting anticancer drugs nonetheless has
been slow, owing to the limited number of known mitochondrial
target proteins that link metabolism with autophagy or cell death.
Recent studies have demonstrated that two members of the newly
discovered family of NEET proteins, NAF-1 (CISD2) and mitoNEET
(mNT; CISD1), could play such a role in cancer cells. NAF-1 was
shown to be a key player in regulating autophagy, and mNT
was proposed to mediate iron and reactive oxygen homeostasis
in mitochondria. Here we show that the protein levels of NAF-1
and mNT are elevated in human epithelial breast cancer cells, and
that suppressing the level of these proteins using shRNA results in
significantly reduced cell proliferation and tumor growth, decreased
mitochondrial performance, uncontrolled accumulation
of iron and reactive oxygen in mitochondria, and activation of
autophagy. Our findings highlight NEET proteins as promising mitochondrial
targets for cancer therapy
Engineering the Redox Potential over a Wide Range within a New Class of FeS Proteins
Abstract: MitoNEET is a newly discovered mitochondrial protein and a target of the TZD class of antidiabetes drugs. MitoNEET is homodimeric with each protomer binding a [2Fe-2S] center through a rare 3-Cys and 1-His coordination geometry. Both the fold and the coordination of the [2Fe-2S] centers suggest that it could have novel properties compared to other known [2Fe-2S] proteins. We tested the robustness of mitoNEET to mutation and the range over which the redox potential (EM) could be tuned. We found that the protein could tolerate an array of mutations that modified the EM of the [2Fe-2S] center over a range of ∼700 mV, which is the largest EM range engineered in an FeS protein and, importantly, spans the cellular redox range (+200 to-300 mV). These properties make mitoNEET potentially useful for both physiological studies and industrial applications as a stable, water-soluble, redox agent
Predictions of the poses and affinity of a ligand over the entire surface of a NEET protein: the case of human mitoNEET
Human NEET proteins contain two [2Fe–2S] iron-sulfur clusters, bound to three Cys and one His residue. They exist in two redox states. Recently, these proteins have revealed themselves as attractive drug targets for mitochondrial dysfunction-related diseases, such as type 2 diabetes, Wolfram syndrome 2, and cancers. Unfortunately, the lack of information and mechanistic understanding on ligands binding to the whole functional, cytoplasmatic domain has limited rational drug design approaches. Here we use an enhanced sampling technique, volume-based metadynamics, recently developed by a team involving some of us, to predict the poses and affinity of 2-benzamido-4-(1,2,3,4-tetrahydronaphthalen-2-yl)-thiophene-3-carboxylate ligand to the entire surface of the cytoplasmatic domain of the human NEET protein mitoNEET (mNT) in an aqueous solution. The calculations, based on the recently published X-ray structure of the complex, are consistent with the measured affinity. The calculated free energy landscape revealed that the ligand can bind in multiple sites and with poses other than the one found in the X-ray. This difference is likely to be caused by crystal packing effects that allow the ligand to interact with multiple adjacent NEET protein copies. Such extra-contacts are of course absent in solution, therefore the X-ray pose is only transient in our calculations, where the binding free energy correlate with the number of contacts. We further evaluated how the reduction and protonation of the Fe-bound histidine, as well as temperature, can affect ligand binding. Both such modifications introduce the possibility for the ligand to bind in area of the protein other than the one observed in the X-ray, with no or little impact on affinity. Overall, our study can provide insights on the molecular recognition mechanisms of ligand binding to mNT in different oxidative conditions, possibly helping rational drug design of NEET ligands
Predictions of the Poses and Affinity of a Ligand over the Entire Surface of a NEET Protein: The Case of Human MitoNEET
Human NEET proteins contain two [2Fe–2S] iron–sulfur clusters, bound to three Cys residues and one His residue. They exist in two redox states. Recently, these proteins have revealed themselves as attractive drug targets for mitochondrial dysfunction-related diseases, such as type 2 diabetes, Wolfram syndrome 2, and cancers. Unfortunately, the lack of information and mechanistic understanding of ligands binding to the whole functional, cytoplasmatic domain has limited rational drug design approaches. Here, we use an enhanced sampling technique, volume-based metadynamics, recently developed by a team involving some of us, to predict the poses and affinity of the 2-benzamido-4-(1,2,3,4-tetrahydronaphthalen-2-yl)-thiophene-3-carboxylate ligand to the entire surface of the cytoplasmatic domain of the human NEET protein mitoNEET (mNT) in an aqueous solution. The calculations, based on the recently published X-ray structure of the complex, are consistent with the measured affinity. The calculated free energy landscape revealed that the ligand can bind in multiple sites and with poses other than the one found in the X-ray. This difference is likely to be caused by crystal packing effects that allow the ligand to interact with multiple adjacent NEET protein copies. Such extra contacts are of course absent in the solution; therefore, the X-ray pose is only transient in our calculations, where the binding free energy correlates with the number of contacts. We further evaluated how the reduction and protonation of the Fe-bound histidine, as well as temperature, can affect ligand binding. Both such modifications introduce the possibility for the ligand to bind in an area of the protein other than the one observed in the X-ray, with no or little impact on affinity. Overall, our study can provide insights on the molecular recognition mechanisms of ligand binding to mNT in different oxidative conditions, possibly helping rational drug design of NEET ligands
- …