51 research outputs found
Social Learning Strategies
Animal learning may play several important roles in evolution. Here we discuss how: (1) learning can provide an additional form of inheritance, (2) learning can instigate plasticity-first evolution, (3) learning can influence niche construction, and (4) learning can generate developmental bias. Evidence for these evolutionary effects of learning has accumulated rapidly over the last two decades, yet their significance for biological evolution remains poorly appreciated
Does a peer model's task proficiency influence children's solution choice and innovation?
This work was supported by a Durham Doctoral Fellowship to L.A.W.The current study investigated whether 4- to 6-year-old children's task solution choice was influenced by the past proficiency of familiar peer models and the children's personal prior task experience. Peer past proficiency was established through behavioral assessments of interactions with novel tasks alongside peer and teacher predictions of each child's proficiency. Based on these assessments, one peer model with high past proficiency and one age-, sex-, dominance-, and popularity-matched peer model with lower past proficiency were trained to remove a capsule using alternative solutions from a three-solution artificial fruit task. Video demonstrations of the models were shown to children after they had either a personal successful interaction or no interaction with the task. In general, there was not a strong bias toward the high past-proficiency model, perhaps due to a motivation to acquire multiple methods and the salience of other transmission biases. However, there was some evidence of a model-based past-proficiency bias; when the high past-proficiency peer matched the participants' original solution, there was increased use of that solution, whereas if the high past-proficiency peer demonstrated an alternative solution, there was increased use of the alternative social solution and novel solutions. Thus, model proficiency influenced innovation.PostprintPeer reviewe
The influence of task difficulty, social tolerance and model success on social learning in Barbary macaques
Despite playing a pivotal role in the inception of animal culture studies, macaque social learning is surprisingly understudied. Social learning is important to survival and influenced by dominance and affiliation in social animals. Individuals generally rely on social learning when individual learning is costly, and selectively use social learning strategies influencing what is learned and from whom. Here, we combined social learning experiments, using extractive foraging tasks, with network-based diffusion analysis (using various social relationships) to investigate the transmission of social information in free-ranging Barbary macaques. We also investigated the influence of task difficulty on reliance on social information and evidence for social learning strategies. Social learning was detected for the most difficult tasks only, with huddling relations outside task introductions, and observation networks during task introductions, predicting social transmission. For the most difficult task only, individuals appeared to employ a social learning strategy of copying the most successful demonstrator observed. Results indicate that high social tolerance represents social learning opportunities and influences social learning processes. The reliance of Barbary macaques on social learning, and cues of model-success supports the costly information hypothesis. Our study provides more statistical evidence to the previous claims indicative of culture in macaques
Social learning strategies and cooperative behaviour: Evidence of payoff bias, but not prestige or conformity, in a social dilemma game
Human cooperation, occurring without reciprocation and between unrelated individuals in large populations, represents an evolutionary puzzle. One potential explanation is that cooperative behaviour may be transmitted between individuals via social learning. Using an online social dilemma experiment, we find evidence that participants’ contributions were more consistent with payoff-biased transmission than prestige-biased transmission or conformity. We also found some evidence for lower cooperation (i) when exposed to social information about peer cooperation levels than without such information, and (ii) in the prisoners’ dilemma game compared to the snowdrift game. A simulation model established that the observed cooperation was more likely to be caused by participants’ general propensity to cooperate than by the effect of social learning strategies employed within the experiment, but that this cooperative propensity could be reduced through selection. Overall, our results support previous experimental evidence indicating the role of payoff-biased transmission in explaining cooperative behaviour, but we find that this effect was small and was overwhelmed by participants’ general propensity for cooperation
Testing differential use of payoff-biased social learning strategies in children and chimpanzees
Various non-human animal species have been shown to exhibit behavioural traditions. Importantly, this research has been guided by what we know of human culture, and the question of whether animal cultures may be homologous or analogous to our own culture. In this paper, we assess whether models of human cultural transmission are relevant to understanding biological fundamentals by investigating whether accounts of human payoff-biased social learning are relevant to chimpanzees (Pan troglodytes). We submitted 4- and 5-year-old children (N = 90) and captive chimpanzees (N = 69) to a token–reward exchange task. The results revealed different forms of payoff-biased learning across species and contexts. Specifically, following personal and social exposure to different tokens, children's exchange behaviour was consistent with proportional imitation, where choice is affected by both prior personally acquired and socially demonstrated token–reward information. However, when the socially derived information regarding token value was novel, children's behaviour was consistent with proportional observation; paying attention to socially derived information and ignoring their prior personal experience. By contrast, chimpanzees' token choice was governed by their own prior experience only, with no effect of social demonstration on token choice, conforming to proportional reservation. We also find evidence for individual- and group-level differences in behaviour in both species. Despite the difference in payoff strategies used, both chimpanzees and children adopted beneficial traits when available. However, the strategies of the children are expected to be the most beneficial in promoting flexible behaviour by enabling existing behaviours to be updated or replaced with new and often superior ones
Chimpanzees demonstrate individual differences in social information use
Studies of transmission biases in social learning have greatly informed our understanding of how behaviour patterns may diffuse through animal populations, yet within-species inter-individual variation in social information use has received little attention and remains poorly understood. We have addressed this question by examining individual performances across multiple experiments with the same population of primates. We compiled a dataset spanning 16 social learning studies (26 experimental conditions) carried out at the same study site over a 12-year period, incorporating a total of 167 chimpanzees. We applied a binary scoring system to code each participant’s performance in each study according to whether they demonstrated evidence of using social information from conspecifics to solve the experimental task or not (Social Information Score—‘SIS’). Bayesian binomial mixed effects models were then used to estimate the extent to which individual differences influenced SIS, together with any effects of sex, rearing history, age, prior involvement in research and task type on SIS. An estimate of repeatability found that approximately half of the variance in SIS was accounted for by individual identity, indicating that individual differences play a critical role in the social learning behaviour of chimpanzees. According to the model that best fit the data, females were, depending on their rearing history, 15–24% more likely to use social information to solve experimental tasks than males. However, there was no strong evidence of an effect of age or research experience, and pedigree records indicated that SIS was not a strongly heritable trait. Our study offers a novel, transferable method for the study of individual differences in social learning
- …