130 research outputs found

    A simulation-based optimisation approach to control nitrogen discharge by activated sludge under winter seasonal peak load

    Get PDF
    Wastewater treatment systems located in cold areas are under increasing pressure to remove nitrogen from their wastewater. As constraining operating conditions like dramatic influent load increases exacerbated by cold temperatures can occur (e.g. winter tourist resorts, ski resorts), specific technical treatment solutions have to be adapted. The objective of this research is to determine the maximal magnitude of load variation which can be applied in winter to an activated sludge treatment system. It aims at analyzing the effects of high influent load variations on the nitrogen removal capacity. Two operating strategies are investigated by dynamic simulations performed with ASM1: • A fixed aeration tank volume with a fixed MLTSS concentration • A variable aeration volume tank with a variable MLTSS concentration It is demonstrated that the variable aeration tank volume strategy is more efficient than the fixed volume strategy to face long-term peak load. To meet an effluent ammonia nitrate concentration of below 10 mgN·ℓ-1, a maximum input load increase by a factor 2 should be applied with the first strategy; whereas with the second strategy a load increase by a factor 4 should be applied (with constant oxygen presence time). If the oxygen presence time can be increased by 50% the maximum input load increase could reach a factor 6. Water SA Vol.32 (4) 2006: pp.561-56

    Maximum growth and decay rates of autotrophic biomass to simulate nitrogen removal at 10°C with municipal activated sludge plants

    Get PDF
    The present study aims at determining most likely values for the maximum growth rate (μA, max) and the endogenous decay rate (bA) of nitrifiers for activated sludge processes treating municipal wastewater operated at low temperature (10°C). The work used nitrification rate data measured on 10 full-scale plants and 2 pilot plants fed with domestic sewage. This set of data was combined with a modelling and a theoretical approach. The unified values (μA, max = 0.45·d-1 and bA = 0.13·d-1) were obtained at 10°C for the kinetic parameters of the autotrophic biomass in the SRT range 10 to 50 d. In addition, the factors affecting the expected nitrification rate (rv, nit) were established by a theoretical approach and confirmed by experimental results. For a given SRT, a linear relationship with the nitrogen volumetric loading rate was shown. The COD/TKN ratio of the influent on the nitrification rate was demonstrated. Finally, an operational tool for the verification of the nitrification rate in the design procedure of activated sludge processes is proposed.Keywords: nitrification; kinetics; low temperature; autotrophic biomass, maximum growth rate; decay rat

    Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.  The Gulf of Aden, situated in the northwest Arabian Sea and linked to the Red Sea, is a relatively unexplored ecosystem. Understanding of large-scale biological dynamics is limited by the lack of adequate datasets. In this study, we analyse 15 years of remotely-sensed chlorophyll-a data (Chl-a, an index of phytoplankton biomass) acquired from the Ocean Colour Climate Change Initiative (OC-CCI) of the European Space Agency (ESA). The improved spatial coverage of OC-CCI data in the Gulf of Aden allows, for the first time, an investigation into the full seasonal succession of phytoplankton biomass. Analysis of indices of phytoplankton phenology (bloom timing) reveals distinct phytoplankton growth periods in different parts of the gulf: a large peak during August (mid-summer) in the western part of the gulf, and a smaller peak during November (mid-autumn) in the lower central gulf and along the southern coastline. The summer bloom develops rapidly at the beginning of July, and its peak is approximately three times higher than that of the autumnal bloom. Remotely-sensed sea-surface temperature (SST), wind-stress curl, vertical nutrient profiles and geostrophic currents inferred from the sea-level anomaly, were analysed to examine the underlying physical mechanisms that control phytoplankton growth. During summer, the prevailing southwesterlies cause upwelling along the northern coastline of the gulf (Yemen), leading to an increase in nutrient availability and enhancing phytoplankton growth along the coastline and in the western part of the gulf. In contrast, in the central region of the gulf, lowest concentrations of Chl-a are observed during summer, due to strong downwelling caused by a mesoscale anticyclonic eddy. During autumn, the prevailing northeasterlies enable upwelling along the southern coastline (Somalia) causing local nutrient enrichment in the euphotic zone, leading to higher levels of phytoplankton biomass along the coastline and in the lower central gulf. The monsoon wind reversal is shown to play a key role in controlling phytoplankton growth in different regions of the Gulf of Aden.European Space Agenc

    Anoxic and aerobic values for the yield coefficient of the heterotrophic biomass: Determination at full-scale plants and consequences on simulations

    Get PDF
    The present study aims at optimising the nitrification and denitrification phases at intermittently aerated process (activated sludge) removing nitrogen from municipal wastewater. The nitrogen removal performance recorded at 22 intermittently aerated plants was compared to the results obtained from the simulations given by the widely used ASM1. It is shown that simulations with a single value for the heterotrophic yield with any electron acceptor over-predict the nitrate concentration in the effluent of treatment plants. The reduction of this coefficient by 20% for anoxic conditions reduces the nitrate concentration by 10 g N·m-3. It significantly improves the accuracy of the predictions of nitrate concentrations in treatedeffluents compare to real data. Simulations with dual values (aerobic and anoxic conditions) for heterotrophic yield (modified ASM1) were then used to determine the practical daily aerobic time interval to meet a given nitrogen discharge objective. Finally, to support design decisions, the relevance of a pre-denitrification configuration in front of an intermittently aerated tank was studied. It is shown that when the load of BOD5 is below the conventional design value, a small contribution of the anoxic zone to nitrate removal occurs, except for over-aerated plants. When plants receive a higher load of BOD5, the modified ASM1 suggests that the anoxic zone has a higher contribution to nitrogen removal, for both correctly and over-aerated plants

    Modeling of extreme freshwater outflow from the north-eastern Japanese river basins to western Pacific Ocean

    Get PDF
    This study demonstrates the importance of accurate extreme discharge input in hydrological and oceanographic combined modeling by introducing two extreme typhoon events. We investigated the effects of extreme freshwater outflow events from river mouths on sea surface salinity distribution (SSS) in the coastal zone of the north-eastern Japan. Previous studies have used observed discharge at the river mouth, as well as seasonally averaged inter-annual, annual, monthly or daily simulated data. Here, we reproduced the hourly peak discharge during two typhoon events for a targeted set of nine rivers and compared their impact on SSS in the coastal zone based on observed, climatological and simulated freshwater outflows in conjunction with verification of the results using satellite remote-sensing data. We created a set of hourly simulated freshwater outflow data from nine first-class Japanese river basins flowing to the western Pacific Ocean for the two targeted typhoon events (Chataan and Roke) and used it with the integrated hydrological (CDRMV3.1.1) and oceanographic (JCOPE-T) model, to compare the case using climatological mean monthly discharges as freshwater input from rivers with the case using our hydrological model simulated discharges. By using the CDRMV model optimized with the SCE-UA method, we successfully reproduced hindcasts for peak discharges of extreme typhoon events at the river mouths and could consider multiple river basin locations. Modeled SSS results were verified by comparison with Chlorophyll-a distribution, observed by satellite remote sensing. The projection of SSS in the coastal zone became more realistic than without including extreme freshwater outflow. These results suggest that our hydrological models with optimized model parameters calibrated to the Typhoon Roke and Chataan cases can be successfully used to predict runoff values from other extreme precipitation events with similar physical characteristics. Proper simulation of extreme typhoon events provides more realistic coastal SSS and may allow a different scenario analysis with various precipitation inputs for developing a nowcasting analysis in the future

    Towards an end-to-end analysis and prediction system for weather, climate, and Marine applications in the Red Sea

    Get PDF
    AbstractThe Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.</jats:p

    The Impact of Insulin Pump Therapy on Glycemic Profiles in Patients with Type 2 Diabetes: Data from the OpT2mise Study

    Get PDF
    Background: The OpT2mise randomized trial was designed to compare the effects of continuous subcutaneous insulin infusion (CSII) and multiple daily injections (MDI) on glucose profiles in patients with type 2 diabetes. Research Design and Methods: Patients with glycated hemoglobin (HbA1c) levels of ≥8% (64 mmol/mol) and ≤12% (108 mmol/mol) despite insulin doses of 0.7-1.8 U/kg/day via MDI were randomized to CSII (n=168) or continued MDI (n=163). Changes in glucose profiles were evaluated using continuous glucose monitoring data collected over 6-day periods before and 6 months after randomization. Results: After 6 months, reductions in HbA1c levels were significantly greater with CSII (-1.1±1.2% [-12.0±13.1 mmol/mol]) than with MDI (-0.4±1.1% [-4.4±12.0 mmol/mol]) (P&lt;0.001). Similarly, compared with patients receiving MDI, those receiving CSII showed significantly greater reductions in 24-h mean sensor glucose (SG) (treatment difference, -17.1 mg/dL; P=0.0023), less exposure to SG &gt;180 mg/dL (-12.4%; P=0.0004) and SG &gt;250 mg/dL (-5.5%; P=0.0153), and more time in the SG range of 70-180 mg/dL (12.3%; P=0.0002), with no differences in exposure to SG&lt;70 mg/dL or in glucose variability. Changes in postprandial (4-h) glucose area under the curve &gt;180 mg/dL were significantly greater with CSII than with MDI after breakfast (-775.9±1,441.2 mg/dL/min vs. -160.7±1,074.1 mg/dL/min; P=0.0015) and after dinner (-731.4±1,580.7 mg/dL/min vs. -71.1±1,083.5 mg/dL/min; P=0.0014). Conclusions: In patients with suboptimally controlled type 2 diabetes, CSII significantly improves selected glucometrics, compared with MDI, without increasing the risk of hypoglycemia

    Phototrophic biofilms and their potential applications

    Get PDF
    Phototrophic biofilms occur on surfaces exposed to light in a range of terrestrial and aquatic environments. Oxygenic phototrophs like diatoms, green algae, and cyanobacteria are the major primary producers that generate energy and reduce carbon dioxide, providing the system with organic substrates and oxygen. Photosynthesis fuels processes and conversions in the total biofilm community, including the metabolism of heterotrophic organisms. A matrix of polymeric substances secreted by phototrophs and heterotrophs enhances the attachment of the biofilm community. This review discusses the actual and potential applications of phototrophic biofilms in wastewater treatment, bioremediation, fish-feed production, biohydrogen production, and soil improvement
    corecore