1,737 research outputs found

    Quantum and Classical Disparity and Accord

    Full text link
    Discrepancies and accords between quantum (QM) and classical mechanics (CM) related to expectation values and periods are found for both the simple harmonic oscillator (SHO) and a free particle in a box (FPB), which may apply generally. These indicate non-locality is expected throughout QM. The FPB energy states violate the Correspondence Principle. Previously unexpected accords are found and proven that the classical and quantum expectation values are the same for the expectation value of the second moment and the beat period (i.e. beats between the phases for adjoining energy states) for the SHO for all quantum numbers, n. However, for the FPB the beat periods differ significantly at small n. It is shown that a particle's velocity in an infinite square well varies, no matter how wide the box, nor how far the particle is from the walls. The quantum free particle variances share an indirect commonality with the Aharonov-Bohm and Aharonov-Casher effects in that there is a quantum action in the absence of a force. The concept of an "Expectation Value over a Partial Well Width" is introduced. This paper raises the question as to whether these inconsistencies are undetectable, or can be empirically ascertained. These inherent variances may need to be fixed, or nature is manifestly more non-classical than expected.Comment: To be Published in International Journal of Theoretical Physics. Published on line by IJTP 23 Sept.2008: Original at http://www.springerlink.co

    Cluster-Impact Fusion and Effective Deuteron Temperature

    Full text link
    Temperature and kinematic line broadening are the primary contributions to the width of the proton energy spectrum measured in cluster-impact fusion experiments. By ascertaining these two contributions, we have determined an effective temperature for the high-velocity deuteron component that is responsible for the measured fusion yield. The extracted effective temperature is substantially higher than conventional estimates., and implies that cluster-impact fusion is hot fusion on an atomic scale. The proton spectrum rules out contaminants in explaining the high yield.Comment: 11 pages, 2 figures. PACS numbers: 79.20.RF, 25.45.--z, 47.40.Nm, 52.50. L

    Is Quantum Mechanics Incompatible with Newton's First Law

    Full text link
    Quantum mechanics (QM) clearly violates Newton's First Law of Motion (NFLM) in the quantum domain for one of the simplest problems, yielding an effect in a force-free region much like the Aharonov-Bohm effect. In addition, there is an incompatibility between the predictions of QM in the classical limit, and that of classical mechanics (CM) with respect to NFLM. A general argument is made that such a disparity may be found commonly for a wide variety of quantum predictions in the classical limit. Alternatives to the Schrodinger equation are considered that might avoid this problem. The meaning of the classical limit is examined. Critical views regarding QM by Schrodinger, Bohm, Bell, Clauser, and others are presented to provide a more complete perspective.Comment: Paper has been revised to conform to published versio

    Phospholemman: a novel cardiac stress protein.

    Get PDF
    Phospholemman (PLM), a member of the FXYD family of regulators of ion transport, is a major sarcolemmal substrate for protein kinases A and C in cardiac and skeletal muscle. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. Functionally, when phosphorylated at serine(68), PLM stimulates Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger in cardiac myocytes. In heterologous expression systems, PLM modulates the gating of cardiac L-type Ca(2+) channel. Therefore, PLM occupies a key modulatory role in intracellular Na(+) and Ca(2+) homeostasis and is intimately involved in regulation of excitation-contraction (EC) coupling. Genetic ablation of PLM results in a slight increase in baseline cardiac contractility and prolongation of action potential duration. When hearts are subjected to catecholamine stress, PLM minimizes the risks of arrhythmogenesis by reducing Na(+) overload and simultaneously preserves inotropy by inhibiting Na(+)/Ca(2+) exchanger. In heart failure, both expression and phosphorylation state of PLM are altered and may partly account for abnormalities in EC coupling. The unique role of PLM in regulation of Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and potentially L-type Ca(2+) channel in the heart, together with the changes in its expression and phosphorylation in heart failure, make PLM a rational and novel target for development of drugs in our armamentarium against heart failure. Clin Trans Sci 2010; Volume 3: 189-196

    The influence of direct DD-meson production to the determination on the nucleon strangeness asymmetry via dimuon events in neutrino experiments

    Full text link
    Experimentally, the production of oppositely charged dimuon events by neutrino and anti-neutrino deep inelastic scattering (DIS) is used to determine the strangeness asymmetry inside a nucleon. Here we point out that the direct production of DD-meson in DIS may make substantial influence to the measurement of nucleon strange distributions. The direct DD-meson production is via the heavy quark recombination (HQR) and via the light quark fragmentation from perturbative QCD (LQF-P). To see the influence precisely, we compute the direct DD-meson productions via HQR and LQF-P quantitatively and estimate their corrections to the analysis of the strangeness asymmetry. The results show that HQR has stronger effect than LQF-P does, and the former may influence the experimental determination of the nucleon strangeness asymmetry.Comment: 9 latex pages, 7 figure

    Satellites of the largest Kuiper Belt objects

    Get PDF
    We have searched the four brightest objects in the Kuiper Belt for the presence of satellites using the newly commissioned Keck Observatory Laser Guide Star Adaptive Optics system. Satellites are seen around three of the four objects: Pluto (whose satellite Charon is well-known and whose recently discovered smaller satellites are too faint to be detected), 2003 EL61 (where a second satellite is seen in addition to the previously known satellite), and 2003 UB313 (where a satellite is seen for the first time). The object 2005 FY9, the brightest Kuiper Belt object (KBO) after Pluto, does not have a satellite detectable within 0".4 with a brightness of more than 1% of the primary. The presence of satellites around three of the four brightest KBOs is inconsistent with the fraction of satellites in the Kuiper Belt at large at the 99.2% confidence level, suggesting a different formation mechanism for these largest KBO satellites. The two satellites of 2003 EL61, and the one satellite of 2003 UB313, with fractional brightnesses of 5% and 1.5%, and 2%, of their primaries, respectively, are significantly fainter relative to their primaries than other known KBO satellites, again pointing to possible differences in their origin

    Initial Hubble Diagram Results from the Nearby Supernova Factory

    Full text link
    The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagram (relative distance vs. redshift) and a description of some analyses using this rich dataset.Comment: Short version of proceedings for ICHEP08, Philadelphia PA, July 2008; see v1 for full-length versio

    Compactness and existence results in weighted Sobolev spaces of radial functions. Part II: Existence

    Full text link
    We prove existence and multiplicity results for finite energy solutions to the nonlinear elliptic equation u+V(x)u=g(x,u)in ΩRN, N3, -\triangle u+V\left( \left| x\right| \right) u=g\left( \left| x\right| ,u\right) \quad \textrm{in }\Omega \subseteq \mathbb{R}^{N},\ N\geq 3, where Ω\Omega is a radial domain (bounded or unbounded) and uu satisfies u=0u=0 on Ω\partial \Omega if ΩRN\Omega \neq \mathbb{R}^{N} and u0u\rightarrow 0 as x\left| x\right| \rightarrow \infty if Ω\Omega is unbounded. The potential VV may be vanishing or unbounded at zero or at infinity and the nonlinearity gg may be superlinear or sublinear. If gg is sublinear, the case with g(,0)0g\left( \left| \cdot \right| ,0\right) \neq 0 is also considered.Comment: 29 pages, 8 figure

    Atmospheric extinction properties above Mauna Kea from the Nearby Supernova Factory spectro-photometric data set

    Full text link
    We present a new atmospheric extinction curve for Mauna Kea spanning 3200--9700 \AA. It is the most comprehensive to date, being based on some 4285 standard star spectra obtained on 478 nights spread over a period of 7 years obtained by the Nearby SuperNova Factory using the SuperNova Integral Field Spectrograph. This mean curve and its dispersion can be used as an aid in calibrating spectroscopic or imaging data from Mauna Kea, and in estimating the calibration uncertainty associated with the use of a mean extinction curve. Our method for decomposing the extinction curve into physical components, and the ability to determine the chromatic portion of the extinction even on cloudy nights, is described and verified over the wide range of conditions sampled by our large dataset. We demonstrate good agreement with atmospheric science data obtain at nearby Mauna Loa Observatory, and with previously published measurements of the extinction above Mauna Kea.Comment: 22 pages, 24 figures, 6 table

    Critical Review of Theoretical Models for Anomalous Effects (Cold Fusion) in Deuterated Metals

    Full text link
    We briefly summarize the reported anomalous effects in deuterated metals at ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on important experiments as well as the theoretical basis for the opposition to interpreting them as cold fusion. Then we critically examine more than 25 theoretical models for CF, including unusual nuclear and exotic chemical hypotheses. We conclude that they do not explain the data.Comment: 51 pages, 4 Figure
    corecore