3,193 research outputs found

    Nonlocal lattice fermion models on the 2d torus

    Get PDF
    Abelian fermion models described by the SLAC action are considered on a finite 2d lattice. It is shown that modification of these models by introducing additional Pauli - Villars regularization supresses nonlocal effects and provides agreement with the continuum results in vectorial U(1) models. In the case of chiral fermions the phase of the determinant differs from the continuum one.Comment: 16 pages, LaTeX, 5 eps figures, uses epsf.sty, rotate.st

    Angioarchitectural evolution of clival dural arteriovenous fistulas in two patients.

    Get PDF
    Dural arteriovenous fistulas (dAVFs) may present in a variety of ways, including as carotid-cavernous sinus fistulas. The ophthalmologic sequelae of carotid-cavernous sinus fistulas are known and recognizable, but less commonly seen is the rare clival fistula. Clival dAVFs may have a variety of potential anatomical configurations but are defined by the involvement of the venous plexus just overlying the bony clivus. Here we present two cases of clival dAVFs that most likely evolved from carotid-cavernous sinus fistulas

    Enhancement by polydispersity of the biaxial nematic phase in a mixture of hard rods and plates

    Get PDF
    The phase diagram of a polydisperse mixture of uniaxial rod-like and plate-like hard parallelepipeds is determined for aspect ratios Îş=5\kappa=5 and 15. All particles have equal volume and polydispersity is introduced in a highly symmetric way. The corresponding binary mixture is known to have a biaxial phase for Îş=15\kappa=15, but to be unstable against demixing into two uniaxial nematics for Îş=5\kappa=5. We find that the phase diagram for Îş=15\kappa=15 is qualitatively similar to that of the binary mixture, regardless the amount of polydispersity, while for Îş=5\kappa=5 a sufficient amount of polydispersity stabilizes the biaxial phase. This provides some clues for the design of an experiment in which this long searched biaxial phase could be observed.Comment: 4 pages, 5 eps figure files, uses RevTeX 4 styl

    Stretching Instability of Helical Spring

    Full text link
    We show that when a gradually increasing tensile force is applied to the ends of a helical spring with sufficiently large ratios of radius to pitch and twist to bending rigidity, the end-to-end distance undergoes a sequence of discontinuous stretching transitions. Subsequent decrease of the force leads to step-like contraction and hysteresis is observed. For finite helices, the number of these transitions increases with the number of helical turns but only one stretching and one contraction instability survive in the limit of an infinite helix. We calculate the critical line that separates the region of parameters in which the deformation is continuous from that in which stretching instabilities occur, and propose experimental tests of our predictions.Comment: 5 pages, 4 figure

    DNA in nanopore-counterion condensation and coion depletion

    Full text link
    Molecular dynamics simulations are used to study the equilibrium distribution of monovalent ions in a nanopore connecting two water reservoirs separated by a membrane, both for the empty pore and that with a single stranded DNA molecule inside. In the presence of DNA, the counterions condense on the stretched macromolecule effectively neutralizing it, and nearly complete depletion of coions from the pore is observed. The implications of our results for experiments on DNA translocation through alpha-hemolysin nanopores are discussed.Comment: 8 pages, 2 figure

    Old and New Fields on Super Riemann Surfaces

    Get PDF
    The ``new fields" or ``superconformal functions" on N=1N=1 super Riemann surfaces introduced recently by Rogers and Langer are shown to coincide with the Abelian differentials (plus constants), viewed as a subset of the functions on the associated N=2N=2 super Riemann surface. We confirm that, as originally defined, they do not form a super vector space.Comment: 9 pages, LaTex. Published version: minor changes for clarity, two new reference

    Magnification relations in gravitational lensing via multidimensional residue integrals

    Get PDF
    We investigate the so-called magnification relations of gravitational lensing models. We show that multidimensional residue integrals provide a simple explanation for the existence of these relations, and an effective method of computation. We illustrate the method with several examples, thereby deriving new magnification relations for galaxy lens models and microlensing (point mass lensing).Comment: 16 pages, uses revtex4, submitted to Journal of Mathematical Physic

    Supersymmetric Pair Correlation Function of Wilson Loops

    Get PDF
    We give a path integral derivation of the annulus diagram in a supersymmetric theory of open and closed strings with Dbranes. We compute the pair correlation function of Wilson loops in the generic weakly coupled supersymmetric flat spacetime background with Dbranes. We obtain a -u^4/r^9 potential between heavy nonrelativistic sources in a supersymmetric gauge theory at short distances.Comment: 18 pages, Revte

    Fast Optimal Transport Averaging of Neuroimaging Data

    Full text link
    Knowing how the Human brain is anatomically and functionally organized at the level of a group of healthy individuals or patients is the primary goal of neuroimaging research. Yet computing an average of brain imaging data defined over a voxel grid or a triangulation remains a challenge. Data are large, the geometry of the brain is complex and the between subjects variability leads to spatially or temporally non-overlapping effects of interest. To address the problem of variability, data are commonly smoothed before group linear averaging. In this work we build on ideas originally introduced by Kantorovich to propose a new algorithm that can average efficiently non-normalized data defined over arbitrary discrete domains using transportation metrics. We show how Kantorovich means can be linked to Wasserstein barycenters in order to take advantage of an entropic smoothing approach. It leads to a smooth convex optimization problem and an algorithm with strong convergence guarantees. We illustrate the versatility of this tool and its empirical behavior on functional neuroimaging data, functional MRI and magnetoencephalography (MEG) source estimates, defined on voxel grids and triangulations of the folded cortical surface.Comment: Information Processing in Medical Imaging (IPMI), Jun 2015, Isle of Skye, United Kingdom. Springer, 201
    • …
    corecore