24 research outputs found

    Testing and Calibration of CDs as Radon Detectors at Highly Variable Radon Concentrations and Temperatures

    Get PDF
    The application of the compact disk (CD) method for radon measurements at mines, caves and other workplaces needs testing under highly variable exposure conditions. We present the results from a blind comparison of CDs exposed in the Laboratory of Natural Radiation (Saelices el Chico, Spain). During the exposure the temperature varied from 6.5 to 24.9 °C (average 12.6 °C) and the 222Rn activity concentrations varied from <10 Bq m-3 to 147 kBq m-3. Good correspondence was observed between the integrated 222Rn activity concentration determined by the reference instruments in the laboratory (122,500 ± 6100 kBq h m-3) and that assessed by analysis of the CDs at a depth 80 µm beneath the front surface (118,000 ± 12,000 kBq h m-3) and at a depth of 120 µm (106,000 ± 12,000 kBq h m-3). The theoretical modeling of the CD response under variable temperature and radon concentration suggested that the small bias is probably due to the time variation of the calibration factor because of the time variations of the temperature.Funding: This research was funded by the European Metrology Programme for Innovation and Research (EMPIR), JRP-Contract 16ENV10 MetroRADON (http://www.euramet.org). The EMPIR initiative is co-funded by the, European Union’s Horizon 2020 research and innovation programme and the EMPIR Participating States

    Outdoor Radon as a Tool to Estimate Radon Priority Areas—A Literature Overview

    Get PDF
    Doses from the exposure to outdoor radon are typically an order of magnitude smaller than those from indoor radon, causing a greater interest on investigation of the latter for radiation protection issues. As a consequence, assessment of radon priority areas (RPA) is mainly based on indoor radon measurements. Outdoor radon measurements might be needed to guarantee a complete estimation of radiological risk and may help to improve the estimation of RPA. Therefore, authors have analysed the available literature on outdoor radon to give an overview of outdoor radon surveys and potential correlation with indoor radon and estimation of RPA. The review has shown that outdoor radon surveys were performed at much smaller scale compared to indoor radon. Only a few outdoor radon maps were produced, with a much smaller density, covering a larger area, and therefore putting doubt on the representativeness of this data. Due to a large variety of techniques used for outdoor radon measurements and requirement to have detectors with a high sensitivity and resistance to harsh environmental conditions, a standardised measurement protocol should be derived. This is no simple endeavour since there are more applications in different scientific disciplines for outdoor radon measurements compared to indoor radon

    Overview of Radon Flux Characteristics, Measurements, Models and Its Potential Use for the Estimation of Radon Priority Areas

    Get PDF
    Radon flux measurements provide information about how much radon rises from the ground toward the atmosphere, thus, they could serve as good predictors of indoor radon concentrations. Although there are many different mapping methods with many different input data, radon flux data are generally missing and are not included for the delineation of radon priority areas (RPA). The aim of this literature review is to investigate to what extent radon flux was used, or could be used, for the delineation of RPAs. Numerous factors influencing radon flux were identified, but quantifying their contribution to radon flux measurement still remains a challenge. Different methods and measuring devices were used for the determination of radon flux, thus it is necessary to identify possible inconsistencies in order to harmonise different radon flux measurements. Due to the complexity of radon flux measurements, only two countries were identified to have performed national surveys on outdoor radon, which were of much smaller scale compared to those on indoor radon. A positive correlation between radon flux and radon quantities, such as radon in soil gas and indoor radon, indicates that radon flux could be used as an input parameter for the estimation of RPA. By reviewing radon flux models, it was concluded that up-to-date modelled radon flux maps have reached excellent spatial resolution and will be further improved, hence, they could serve as an input for the estimation and delineation of RPA

    The European Registry for Patients with Mechanical Circulatory Support of the European Association for Cardio-Thoracic Surgery:third report

    Get PDF
    OBJECTIVES: In the third report of the European Registry for Patients with Mechanical Circulatory Support of the European Association for Cardio-Thoracic Surgery, outcomes of patients receiving mechanical circulatory support are reviewed in relation to implant era. METHODS: Procedures in adult patients (January 2011-June 2020) were included. Patients from centres with 3 months). Risk factors for death were explored using univariable Cox regression with a stepwise time-varying hazard ratio (3 months). RESULTS: In total, 4834 procedures in 4486 individual patients (72 hospitals) were included, with a median follow-up of 1.1 (interquartile range: 0.3-2.6) years. The annual number of implants (range: 346-600) did not significantly change (P = 0.41). Both Interagency Registry for Mechanically Assisted Circulatory Support class (classes 4-7: 23, 25 and 33%; P 3 months: 0.45). Bilirubin and creatinine levels were significant risk factors in the early phase but not in the late phase after the implant. CONCLUSIONS: In its 10 years of existence, EUROMACS has become a point of reference enabling benchmarking and outcome monitoring. Patient characteristics and outcomes changed between implant eras. In addition, both occurrence of outcomes and risk factor weights are time dependent

    ECLAIRE: Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems. Project final report

    Get PDF
    The central goal of ECLAIRE is to assess how climate change will alter the extent to which air pollutants threaten terrestrial ecosystems. Particular attention has been given to nitrogen compounds, especially nitrogen oxides (NOx) and ammonia (NH3), as well as Biogenic Volatile Organic Compounds (BVOCs) in relation to tropospheric ozone (O3) formation, including their interactions with aerosol components. ECLAIRE has combined a broad program of field and laboratory experimentation and modelling of pollution fluxes and ecosystem impacts, advancing both mechanistic understanding and providing support to European policy makers. The central finding of ECLAIRE is that future climate change is expected to worsen the threat of air pollutants on Europe’s ecosystems. Firstly, climate warming is expected to increase the emissions of many trace gases, such as agricultural NH3, the soil component of NOx emissions and key BVOCs. Experimental data and numerical models show how these effects will tend to increase atmospheric N deposition in future. By contrast, the net effect on tropospheric O3 is less clear. This is because parallel increases in atmospheric CO2 concentrations will offset the temperature-driven increase for some BVOCs, such as isoprene. By contrast, there is currently insufficient evidence to be confident that CO2 will offset anticipated climate increases in monoterpene emissions. Secondly, climate warming is found to be likely to increase the vulnerability of ecosystems towards air pollutant exposure or atmospheric deposition. Such effects may occur as a consequence of combined perturbation, as well as through specific interactions, such as between drought, O3, N and aerosol exposure. These combined effects of climate change are expected to offset part of the benefit of current emissions control policies. Unless decisive mitigation actions are taken, it is anticipated that ongoing climate warming will increase agricultural and other biogenic emissions, posing a challenge for national emissions ceilings and air quality objectives related to nitrogen and ozone pollution. The O3 effects will be further worsened if progress is not made to curb increases in methane (CH4) emissions in the northern hemisphere. Other key findings of ECLAIRE are that: 1) N deposition and O3 have adverse synergistic effects. Exposure to ambient O3 concentrations was shown to reduce the Nitrogen Use Efficiency of plants, both decreasing agricultural production and posing an increased risk of other forms of nitrogen pollution, such as nitrate leaching (NO3-) and the greenhouse gas nitrous oxide (N2O); 2) within-canopy dynamics for volatile aerosol can increase dry deposition and shorten atmospheric lifetimes; 3) ambient aerosol levels reduce the ability of plants to conserve water under drought conditions; 4) low-resolution mapping studies tend to underestimate the extent of local critical loads exceedance; 5) new dose-response functions can be used to improve the assessment of costs, including estimation of the value of damage due to air pollution effects on ecosystems, 6) scenarios can be constructed that combine technical mitigation measures with dietary change options (reducing livestock products in food down to recommended levels for health criteria), with the balance between the two strategies being a matter for future societal discussion. ECLAIRE has supported the revision process for the National Emissions Ceilings Directive and will continue to deliver scientific underpinning into the future for the UNECE Convention on Long-range Transboundary Air Pollution

    ECLAIRE third periodic report

    Get PDF
    The ÉCLAIRE project (Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems) is a four year (2011-2015) project funded by the EU's Seventh Framework Programme for Research and Technological Development (FP7)

    ÉCLAIRE - Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosytems - second periodic report 01/04/2013 to 30/09/2014

    Get PDF
    corecore