241 research outputs found

    a randomized, open, multicenter phase III trial of lenalidomide/dexamethasone versus lenalidomide/dexamethasone plus subsequent autologous stem cell transplantation and lenalidomide maintenance in patients with relapsed multiple myeloma

    Get PDF
    Background Despite novel therapeutic agents, most multiple myeloma (MM) patients eventually relapse. Two large phase III trials have shown significantly improved response rates (RR) of lenalidomide/dexamethasone compared with placebo/dexamethasone in relapsed MM (RMM) patients. These results have led to the approval of lenalidomide for RMM patients and lenalidomide/dexamethasone has since become a widely accepted second-line treatment. Furthermore, in RMM patients consolidation with high-dose chemotherapy plus autologous stem cell transplantation has been shown to significantly increase progression free survival (PFS) as compared to cyclophosphamide in a phase III trial. The randomized prospective ReLApsE trial is designed to evaluate PFS after lenalidomide/dexamethasone induction, high-dose chemotherapy consolidation plus autologous stem cell transplantation and lenalidomide maintenance compared with the well-established lenalidomide/dexamethasone regimen in RMM patients. Methods/Design ReLApsE is a randomized, open, multicenter phase III trial in a planned study population of 282 RMM patients. All patients receive three lenalidomide/dexamethasone cycles and - in absence of available stem cells from earlier harvesting - undergo peripheral blood stem cell mobilization and harvesting. Subsequently, patients in arm A continue on consecutive lenalidomide/dexamethasone cycles, patients in arm B undergo high dose chemotherapy plus autologous stem cell transplantation followed by lenalidomide maintenance until discontinuation criteria are met. Therapeutic response is evaluated after the 3rd (arm A + B) and the 5th lenalidomide/dexamethasone cycle (arm A) or 2 months after autologous stem cell transplantation (arm B) and every 3 months thereafter (arm A + B). After finishing the study treatment, patients are followed up for survival and subsequent myeloma therapies. The expected trial duration is 6.25 years from first patient in to last patient out. The primary endpoint is PFS, secondary endpoints include overall survival (OS), RR, time to best response and the influence of early versus late salvage high dose chemotherapy plus autologous stem cell transplantation on OS. Discussion This phase III trial is designed to evaluate whether high dose chemotherapy plus autologous stem cell transplantation and lenalidomide maintenance after lenalidomide/dexamethasone induction improves PFS compared with the well-established continued lenalidomide/dexamethasone regimen in RMM patients. Trial registration: ISRCTN16345835 (date of registration 2010-08-24)

    Rationale and design of the German-speaking myeloma multicenter group (GMMG) trial HD6: a randomized phase III trial on the effect of elotuzumab in VRD induction/consolidation and lenalidomide maintenance in patients with newly diagnosed myeloma

    Get PDF
    Background: Despite major advances in therapy, multiple myeloma is still an incurable malignancy in the majority of patients. To increase survival, deeper remissions (i.e. CR) translating into longer PFS need to be achieved. Incorporation of new drugs (i.e. bortezomib and lenalidomide) as induction and maintenance treatment in an intensified treatment concept, including high dose melphalan (200 mg/m2), has resulted in increased CR rates, and is considered the standard of care for younger patients. Elotuzumab in combination with lenalidomide and dexamethasone has given better results as lenalidomide and dexamethasone alone in a phase III trial. The GMMG-HD6 trial will be the first phase III trial investigating the role of elotuzumab in combination with bortezomib, lenalidomide and dexamethasone (VRD) induction/consolidation and lenalidomide maintenance within a high dose concept. Methods: GMMG-HD6 is a randomized, open, multicenter phase III trial. The planned recruitment number is 564 NDMM patients. All patients will receive 4 VRD cycles as induction and undergo peripheral blood stem cell mobilization and harvesting. Thereafter they will be treated with high dose melphalan therapy plus autologous stem cell transplantation followed by 2 cycles of VRD consolidation and lenalidomide maintenance. Patients in arm B1 + B2 will additionally receive elotuzumab in the induction phase, whereas patients in A2 + B2 will be treated with elotuzumab added to consolidation and maintenance. The primary endpoint of the trial is PFS. Secondary objectives and endpoints are OS, CR rates after induction therapy comparing the two arms VRD (A1 + A2) vs VRD + elotuzumab (B1 + B2), CR rates after consolidation treatment, best response to treatment during the study, time to progression (TTP), duration of response (DOR), toxicity and quality of life. Results: Since this is the publication of a study protocol of an ongoing study, no results can be presented. Discussion: This phase III trial is designed to evaluate whether the addition of elotuzumab to an intensified treatment concept with high dose melphalan chemotherapy plus autologous stem cell transplantation and induction, consolidation and maintenance treatment with bortezomib and lenalidomide is able to improve PFS compared to the same concept without elotuzumab. Trial registration: NCT02495922 on June 24th, 2015

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure

    Segmented flow generator for serial crystallography at the European X-ray free electron laser

    Get PDF
    Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported

    Therapeutic Advances Propelled by Deciphering Tumor Biology and Immunology—Highlights of the 8th Heidelberg Myeloma Workshop

    No full text
    The diagnostics and treatment of newly diagnosed and relapsed MM are continuously evolving. While advances in the field of (single cell) genetic analysis now allow for characterization of the disease at an unprecedented resolution, immunotherapeutic approaches and MRD testing are at the forefront of the current clinical trial landscape. Here, we discuss research progress aimed at gaining a better understanding of this heterogenous disease entity, presented at the 8th Heidelberg Myeloma Workshop. We address the questions of whether biology can guide treatment decisions in MM and how assessment for measurable residual disease can help physicians in clinical decision-making. Finally, we summarize current developments in immunotherapeutic approaches that promise improved patient outcomes for MM patients. Besides summarizing key developments in MM research, we highlight perspectives given by key opinion leaders in the field

    Can 18F-NaF PET/CT before Autologous Stem Cell Transplantation Predict Survival in Multiple Myeloma?

    No full text
    There is an unmet need for positron emission tomography (PET) radiotracers that can image bone disease in multiple myeloma (MM) in a more sensitive and specific way than the widely used 18F-fluorodeoxyglucose (18F-FDG). Sodium fluoride (18F-NaF) is a highly sensitive tracer of bone reconstruction, evolving as an important imaging agent for the assessment of malignant bone diseases. We attempted to investigate for the first time the prognostic significance of 18F-NaF PET/CT in newly diagnosed, symptomatic MM patients planned for autologous stem cell transplantation (ASCT). Forty-seven patients underwent dynamic and static PET/CT with 18F-NaF before treatment. After correlation with the respective findings on CT and 18F-FDG PET/CT that served as reference, the 18F-NaF PET findings were compared with established factors of high-risk disease, like cytogenetic abnormalities as well as bone marrow plasma cell infiltration rate. Furthermore, the impact of 18F-NaF PET/CT on progression-free survival (PFS) was analyzed. Correlation analysis revealed a moderate, significant correlation of the 18F-NaF parameters SUVaverage and K1 in reference tissue with bone marrow plasma cell infiltration rate. However, no significant correlation was observed regarding all other 18F-NaF PET parameters. Survival analysis revealed that patients with a pathologic 18F-NaF PET/CT have a shorter PFS (median = 36.2 months) than those with a physiologic scan (median = 55.6 months) (p = 0.02). Nevertheless, no quantitative 18F-NaF parameter could be shown to adversely affect PFS. In contrast, the respective analysis for quantitative dynamic 18F-FDG PET/CT revealed that the parameters SUVmax, fractional blood volume (VB), k3 and influx from reference tissue as well as SUVaverage from MM lesions had a significant negative impact on patient survival. The herein presented findings highlight the rather limited role of 18F-NaF PET/CT as a single PET approach in MM
    corecore