19,018 research outputs found

    Dynamical coupled-channels: the key to understanding resonances

    Full text link
    Recent developments on a dynamical coupled-channels model of hadronic and electromagnetic production of nucleon resonances are summarized.Comment: Invited Plenary talk at the 20th European Conference on Few-Body Problems in Physics (EFB20), September 10-14 2007, Pisa, Italy. To appear in the proceedings in Few-Body System

    Effect of Superovulation on Piglet Production

    Full text link
    Sixty gilts with average body weight of 107.80 + 5.10 kg were used in an experiment to study the use of PMSG and hCG as superovulation agent to increase piglet production. In this experiment 60 gilts were assigned into a completely randomized design with 4 treatments of superovulation with dose level 0, 600, 1200 and 1800 IU/gilt. Injections were conducted 3 days before estrus. During gestation, gilts were placed in single pigpen, and maintained to term. The parameters were birth weight, preweaning growth and mortality. The results showed that superovulation dose levels of 600 and 1200 IU/gilt increased the piglet birth weight, litter size, preweaning growth and piglet production at 90 days. It is concluded that superovulation with dose levels of 600 to 1200 IU can improve productivity. (Animal Production 8(1): 8-15 (2006

    Molecular Model of Dynamic Social Network Based on E-mail communication

    Get PDF
    In this work we consider an application of physically inspired sociodynamical model to the modelling of the evolution of email-based social network. Contrary to the standard approach of sociodynamics, which assumes expressing of system dynamics with heuristically defined simple rules, we postulate the inference of these rules from the real data and their application within a dynamic molecular model. We present how to embed the n-dimensional social space in Euclidean one. Then, inspired by the Lennard-Jones potential, we define a data-driven social potential function and apply the resultant force to a real e-mail communication network in a course of a molecular simulation, with network nodes taking on the role of interacting particles. We discuss all steps of the modelling process, from data preparation, through embedding and the molecular simulation itself, to transformation from the embedding space back to a graph structure. The conclusions, drawn from examining the resultant networks in stable, minimum-energy states, emphasize the role of the embedding process projecting the non–metric social graph into the Euclidean space, the significance of the unavoidable loss of information connected with this procedure and the resultant preservation of global rather than local properties of the initial network. We also argue applicability of our method to some classes of problems, while also signalling the areas which require further research in order to expand this applicability domain

    New flexible silicone-based EEG dry sensor material compositions exhibiting improvements in lifespan, conductivity, and reliability

    Full text link
    © 2016 by the authors; licensee MDPI, Basel, Switzerland. This study investigates alternative material compositions for flexible silicone-based dry electroencephalography (EEG) electrodes to improve the performance lifespan while maintaining high-fidelity transmission of EEG signals. Electrode materials were fabricated with varying concentrations of silver-coated silica and silver flakes to evaluate their electrical, mechanical, and EEG transmission performance. Scanning electron microscope (SEM) analysis of the initial electrode development identified some weak points in the sensors’ construction, including particle pull-out and ablation of the silver coating on the silica filler. The newly-developed sensor materials achieved significant improvement in EEG measurements while maintaining the advantages of previous silicone-based electrodes, including flexibility and non-toxicity. The experimental results indicated that the proposed electrodes maintained suitable performance even after exposure to temperature fluctuations, 85% relative humidity, and enhanced corrosion conditions demonstrating improvements in the environmental stability. Fabricated flat (forehead) and acicular (hairy sites) electrodes composed of the optimum identified formulation exhibited low impedance and reliable EEG measurement; some initial human experiments demonstrate the feasibility of using these silicone-based electrodes for typical lab data collection applications

    Laser-induced fusion of human embryonic stem cells with optical tweezers

    Get PDF
    published_or_final_versio

    Survival Motor Neuron (SMN) protein is required for normal mouse liver development

    Get PDF
    Spinal Muscular Atrophy (SMA) is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Decreased levels of, cell-ubiquitous, SMN protein is associated with a range of systemic pathologies reported in severe patients. Despite high levels of SMN protein in normal liver, there is no comprehensive study of liver pathology in SMA. We describe failed liver development in response to reduced SMN levels, in a mouse model of severe SMA. The SMA liver is dark red, small and has: iron deposition; immature sinusoids congested with blood; persistent erythropoietic elements and increased immature red blood cells; increased and persistent megakaryocytes which release high levels of platelets found as clot-like accumulations in the heart. Myelopoiesis in contrast, was unaffected. Further analysis revealed significant molecular changes in SMA liver, consistent with the morphological findings. Antisense treatment from birth with PMO25, increased lifespan and ameliorated all morphological defects in liver by postnatal day 21. Defects in the liver are evident at birth, prior to motor system pathology, and impair essential liver function in SMA. Liver is a key recipient of SMA therapies, and systemically delivered antisense treatment, completely rescued liver pathology. Liver therefore, represents an important therapeutic target in SMA

    A coherent middle Pliocene magnetostratigraphy, Wanganui Basin, New Zealand

    Get PDF
    We document magnetostratigraphies for three river sections (Turakina, Rangitikei, Wanganui) in Wanganui Basin and interpret them as corresponding to the Upper Gilbert, the Gauss and lower Matuyama Chrons of the Geomagnetic Polarity Timescale, in agreement with foraminiferal biostratigraphic datums. The Gauss-Gilbert transition (3.58 Ma) is located in both the Turakina and Wanganui River sections, while the Gauss-Matuyama transition (2.58 Ma) is located in all three sections, as are the lower and upper boundaries of the Mammoth (3.33–3.22 Ma) and Kaena (3.11–3.04 Ma) Subchrons. Our interpretations are based in part on the re-analysis of existing datasets and in part on the acquisition and analysis of new data, particularly for the Wanganui River section. The palaeomagnetic dates of these six horizons provide the only numerical age control for a thick (up to 2000 m) mudstone succession (Tangahoe Mudstone) that accumulated chiefly in upper bathyal and outer neritic palaeoenvironments. In the Wanganui River section the mean sediment accumulation rate is estimated to have been about 1.8 m/k.y., in the Turakina section it was about 1.5 m/k.y., and in the Rangitikei section, the mean rate from the beginning of the Mammoth Subchron to the Hautawa Shellbed was about 1.1 m/k.y. The high rates may be associated with the progradation of slope clinoforms northward through the basin. This new palaeomagnetic timescale allows revised correlations to be made between cyclothems in the Rangitikei River section and the global Oxygen Isotope Stages (OIS) as represented in Ocean Drilling Program (ODP) Site 846. The 16 depositional sequences between the end of the Mammoth Subchron and the Gauss-Matuyama Boundary are correlated with OIS MG2 to 100. The cyclothems average 39 k.y. in duration in our age model, which is close to the 41 k.y. duration of the orbital obliquity cycles. We support the arguments advanced recently in defence of the need for local New Zealand stages as a means of classifying New Zealand sedimentary successions, and strongly oppose the proposal to move stage boundaries to selected geomagnetic polarity transitions. The primary magnetisation of New Zealand mudstone is frequently overprinted with secondary components of diagenetic origin, and hence it is often difficult to obtain reliable magnetostratigraphic records. We suggest specific approaches, analytical methods, and criteria to help ensure robustness and coherency in the palaeomagnetic identification of chron boundaries in typical New Zealand Cenozoic mudstone successions

    Systems impact of zinc chelation by the epipolythiodioxopiperazine dithiol gliotoxin in Aspergillus fumigatus: a new direction in natural product functionality.

    Get PDF
    The non-ribosomal peptide gliotoxin, which autoinduces its own biosynthesis, has potent anti-fungal activity, especially in the combined absence of the gliotoxin oxidoreductase GliT and bis-thiomethyltransferase GtmA. Dithiol gliotoxin (DTG) is a substrate for both of these enzymes. Herein we demonstrate that DTG chelates Zn2+ (m/z 424.94), rapidly chelates Zn2+ from Zn(4-(2-pyridylazo)-resorcinol) (Zn(PAR)2) and also inhibits a Zn2+-dependent alkaline phosphatase (AP). Zn2+ addition rescues AP function following DTG-associated inhibition, and pre-incubation of DTG with Zn2+ completely protects AP activity. Zn2+ (1-50 μM) also significantly relieves the potent gliotoxin-mediated inhibition of Aspergillus fumigatus ΔgliT::ΔgtmA (p < 0.05), which infers in vivo dithiol gliotoxin-mediated sequestration of free Zn2+ or chelation from intracellular metalloenzymes as inhibitory mechanisms. Quantitative proteomic analysis revealed that excess Zn2+ alters the effect of gliotoxin on A. fumigatus ΔgliT, with differential abundance of secondary metabolism-associated proteins in the combinatorial condition. GtmA abundance increased 18.8 fold upon co-addition of gliotoxin and Zn2+ compared to gliotoxin alone, possibly to compensate for disruption to GtmA activity, as seen in in vitro assays. Furthermore, DTG effected significant in vitro aggregation of a number of protein classes, including Zn2+-dependent enzymes, while proteins were protected from aggregation by pre-incubating DTG with Zn2+. We conclude that DTG can act in vivo as a Zn2+ chelator, which can significantly impede A. fumigatus growth in the absence of GliT and GtmA

    Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes

    Get PDF
    Cell transfection is a technique wherein foreign genetic molecules are delivered into cells. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great value. Herein, we developed an automated micropipette-based quantitative microinjection technology that can deliver precise amounts of materials into cells. The developed microinjection system achieved precise single-cell microinjection by pre-patterning cells in an array and controlling the amount of substance delivered based on injection pressure and time. The precision of the proposed injection technique was examined by comparing the fluorescence intensities of fluorescent dye droplets with a standard concentration and water droplets with a known injection amount of the dye in oil. Injection of synthetic modified mRNA (modRNA) encoding green fluorescence proteins or a cocktail of plasmids encoding green and red fluorescence proteins into human foreskin fibroblast cells demonstrated that the resulting green fluorescence intensity or green/red fluorescence intensity ratio were well correlated with the amount of genetic material injected into the cells. Single-cell transfection via the developed microinjection technique will be of particular use in cases where cell transfection is challenging and genetically modified of selected cells are desiredpublished_or_final_versio
    corecore