25 research outputs found
On some new mathematical models for infective diseases: analysis, equilibrium, positivity and vaccination controls
196 p.Por un lado, cuando la enfermedad se desarrolla mediante la transmisión de los agentes patógenos de un individuo enfermo a otro, como puede ser el caso del SIDA, o la gripe, se le llama enfermedad infecciosa, mientras que las enfermedades no-infecciosas se desarrollan sin la intervención de estos agentes, y normalmente se asocian a predisposiciones genéticas, ambientales o modos de vida específicos. Esto no significa que estas dos categorías no puedan solaparse, por ejemplo, la cirrosis y el cáncer de hígado se asocian firmemente a contraer hepatitis (una enfermedad infecciosa), aunque contraer esta enfermedad no es necesario para que incida el cáncer o la cirrosis. En otra enfermedades, las variables derivadas del ecosistema de los agentes de infección puede aumentar la complejidad de los parámetros de los modelos hasta un nivel donde estos se vuelven inservibles. En tales casos, como en el de las enfermedades causadas por ¿macro parásitos¿ tipo pulgas, trematodos u hongos, no se tienen en cuenta a la hora de modelizar, ya que las circunstancias ambientales en las que se da la infección y el numero de agentes infecciosos tienen tanta influencia en la enfermedad que la complejidad de los modelos aumenta hasta el punto de no poder describir correctamente.Por tanto, los modelos matemáticos mas eficaces se concentran en las enfermedades infecciosas de transmisión ¿rápida¿, donde la densidad de patógenos dentro del anfitrión y su ciclo de vida no son relevantes para el modelo. Epidemias típicas estudiadas suelen ser la gripe, tos ferina, tuberculosis, malaria, dengue, sarampión, difteria, etc¿La mecánica de estas enfermedades epidémicas comparte una serie de parámetros caracterizados por la transmisión de la enfermedad de infectados a no infectados, y típicamente contiene unos periodos de tiempo en donde la enfermedad no ha presentado los síntomas (periodo de incubación) pero el paciente se ha vuelto infectivo para otros. Mas tarde, los infectados muestran síntomas externos (infecciosos) de diferentes tipos e intensidades, dependiendo del tipo de enfermedad e individuos. Al cabo de cierto tiempo, que depende de cada enfermedad, la población infectada puede volver a recobrarse, siendo esta inmune a la enfermedad o susceptible de nuevo a otras infecciones. Los modelos epidémicos se refieren a las diversas clases de subpoblaciones relativas a la enfermedad usando los siguientes acrónimos:¿ La subpoblación susceptible (¿S¿), o la porción de individuos de la población total que es susceptible a ser infectada¿ La subpoblación infectada (¿E¿) son aquellos individuos de la población que ha sido contagiada por la enfermedad pero todavía no es capaz de producir nuevas infecciones. También se les llama población expuesta.¿ La subpoblación infecciosa (¿I¿) esta compuesta de aquellos individuos infectados que son capaces de transmitir la infección a otros individuos.¿ La subpoblación ¿recobrada¿ (¿R¿) se refiere a la población no enferma que no pertenece a la población susceptible. Se entiende que es inmune tras haber pasado la enfermedad y tener defensas activas contra ella, aunque otras veces dicha inmunidad se puede adquirir mediante otros medios.Este es el caso en algunos modelos epidémicos en el que se incluye también una subpoblación extra llamada ¿vacunados¿ (¿V¿).La suma total de las subpoblaciones se denomina población total (¿N¿)De esta forma se presentan una serie de modelos típicos con diferentes niveles de complejidad ¿ Modelos SI (Susceptible/Infeccioso)¿ Modelos SIR (Susceptible/Infeccioso/Recobrado)¿ Modelos SEIR (Susceptible/Expuesto/Infeccioso/Recobrado)¿ Modelos SVEIR (Susceptible/Vacunado/Expuesto/Infeccioso/Recobrado)En estos modelos pueden aplicar una función para representar la vacunación, a la que nos referiremos como Vc. . Según sea la naturaleza específica de las enfermedad y la reacción del sistema inmunitario del huésped, algunas variantes de los modelos, como el anterior, incluyen un nuevo "S" final en su correspondiente acrónimo (cf. SEIRS), como la etapa final de la enfermedad se remonta desde recuperó para susceptible. Dependiendo de la velocidad de la del proceso y el impacto en la salud de la población enferma, las fluctuaciones en la población total se pueden tener en cuenta. Por lo tanto, la tasa de producción de los recién nacidos y las tasas de mortalidad se tienen en cuenta aunque, por simplicidad, a veces la población se supone constante y estos parámetros se omiten en las ecuaciones.A la hora de controlar estas enfermedades hay varios métodos para reducir, en términos estadísticos, la probabilidad de infección sobre la población y la propagación de la enfermedad. Muchos de ellos implican la eliminación de cierta cantidad de individuos susceptibles o infectados de la población (sacrificio), o el aislamiento de lo conocido infectados del resto de los individuos sanos (cuarentena). La medicina tiene una larga historia con esta forma de control de la enfermedad, que en nuestros modelos se convertirían en las leyes de control. Estos métodos son genéricos y pueden aplicarse cuando la información acerca de la enfermedad es mínima. Sin embargo, los recursos necesarios utilizando estos métodos no siempre son menos intrusivo y son necesarios otros métodos más asequibles. Por lo tanto, la vacunación se considera una ley de control y de tal modo hay dos estrategias principales sobre cómo aplicarlas: Vacunación constante y vacunación impulsiva, siendo estas controladas por leyes basadas en datos de las subpoblaciones, etc.Las leyes de control de la vacunación pueden incluir observadores para estimar las subpoblaciones con el fin de sintetizar los controles basados en ellos. Un dato importante a tener en cuenta en relación con la vacunación es la siguiente: los modelos epidémicos nunca son (estado) controlables bajo cualquier ley de control de la vacunación y, lo que es equivalente, los modelos epidémicos siempre muestran (estado) una incontrolabilidad, por lo que no hay una ley de control que permita llevar a todas las subpoblaciones a los valores prescritos en un tiempo finito. La razón intuitiva para esta incontrolabilidad es que los modelos epidémicos describen transiciones entre las subpoblaciones y normalmente una persona que se infecta, siempre que no muere, pasa a lo largo de todas las fases de la enfermedad a través del tiempo por lo que esto hace imposible lograr con capacidad de control de la forma habitual. Sin embargo, debe tenerse en cuenta que la propiedad de "controlabilidad de salida" es un objetivo realizable, si la salida se define con alguna combinación de subpoblación. Por ejemplo, si la salida es la suma de expuestos + infecciosos, puede fijarse como la controlabilidad de salida observada subjetivas para fijar a cero esta salida. Si se define como la suma de los susceptibles + inmunes, puede fijarse como objetivo la controlabilidad de salida para arreglar esta salida para ellos emergente totales.Esta tesis doctoral versa sobre algunas propiedades en la dinámica de las clases de varios de los modelos epidémicos SIRS, SEIRS y SVEIRS. Se le da una mayor relevancia a las propiedades de estabilidad local (alrededor de los puntos de equilibrio) y global, así como a las reglas de vacunación que se implementan con el fin de eliminar asintóticamente la enfermedad y / o para mejorar su comportamiento transitorio hacia a erradicación en la práctica.Nuestros modelos epidémicos se pueden desarrollar ya sea con poblaciones normalizadas o no normalizadas (la población total es de unidad y de las subpoblaciones son fracciones de la unidad cuya suma iguala la unidad). En el primer caso, la evolución en el tiempo de las subpoblaciones se interpreta como un porcentaje de la cantidad de individuos de cada subpoblación en cada instante de tiempo. Otras propiedades de interés en el contexto de las ecuaciones diferenciales o sistemas de tiempo continuo o de tiempo discreto son: i) Estabilidad global/local: La estabilidad global de la población es irrelevante para los modelos normalizados, ya que todas las subpoblaciones están delimitadas para todos los tiempos. En el caso de los modelos de un-normalizada, es de interés en el caso de que la población total es ilimitado.ii) ii) Estabilidad parcial global/local: Es relevante tanto para ambos modelos normalizados/no normalizados, en el sentido de que las subpoblaciones expuestas e infecciosas son candidatas a converger asintóticamente a cero. De la misma forma, la suma de todas las otras subpoblaciones converge asintóticamente al total de la población.iii) iii) La permanencia de la infección: Se relaciona con el caso cuando las subpoblaciones expuestas/infecciosas no pueden eliminarse de manera. Si el modelo es permanente para cualquier condición inicial, entonces el punto de equilibrio libre de enfermedad (es decir, la que tiene cero subpoblaciones infectadas o infecciosas) no puede ser asintóticamente estable. iv) iv) La positividad de la solución: Dada la coherencia de los modelos en relación con la naturaleza de lo descrito, los modelos epidémicos no admiten subpoblaciones negativas. os modelos se describen mediante un conjunto de parámetros, siendo algunos de ellos depende de la especie tratados y algunos de ellos de la enfermedad en particular. En general los parámetros principales son :-Las tasas de natalidad de la población, , que se relacionan con la población que por unidad de tiempo, en promedio. -Las tasa de mortalidad natural relacionada con la muerte de las personas debido a la vejez y causas no relacionada con la enfermedad-A su vez, existe una tasa de mortalidad adicional causado por la enfermedad en la subpoblación infectada. Al igual que en la tasa de mortalidad natural, es proporcional a la inversa la vida, en promedio, de un individuo afectado por la enfermedad.-Ratios de transición de subpoblación infectada a infecciosa, de infecciosa a recuperada y de recuperada a susceptible de nuevoAsimismo, dado que tratamos con enfermedades infecciosas, se tiene en cuenta una constante transmisión de la enfermedad, que se define en función del tipo de modelo utilizado.-R0: número de reproducción básica, que se define como el número promedio de casos secundarios generados a partir de un caso primario medio en una subpopblación totalmente susceptible. Este numero se deriva del resto de los parámetros y depende del tipo de modelos, y en muchos aspectos es fundamental para comprender la naturaleza de las enfermedades y su evolución a través del tiempo. El número básico de reproducción se utiliza para estudiar el impacto global que una enfermedad puede producir en una población, como R0> 1 significaría que el número de personas infectadas aumentará con respecto a la generación anterior, y R0 <1 significaría lo contrario, una disminución del número de infectados. El valor de R0 entonces se obtiene multiplicando el tiempo de infectividad medio de una persona por la tasa media de infección de un individuo en una población libre de enfermedad.Desde un punto de vista matemático, sin embargo, este individuo infectado solitario en una población libre de enfermedad se considera una perturbación del estado libre de enfermedad, uno de los muchos posibles pequeños cambios realizados en un estado de equilibrio. Entonces, dadas las ecuaciones diferenciales que regulan la dinámica de estos modelos, el efecto general de cualquier perturbación en la evolución del sistema cuando está en un estado de equilibrio se puede calcular. Dada una serie de ecuaciones de la dinámica del sistema, podemos obtener la matriz jacobiana en el punto libre de enfermedad. Entonces, la obtención de los autovalores de esta matriz nos dará las tendencias (cuando las perturbaciones realizadas son pequeñas) a aumentar o disminuir de los diversos tipos de alteraciones que se pueden hacer a este estado libre de enfermedad. Cuando los autovalores son negativos, el sistema reacciona disminuyendo las subpoblaciones que han subido conforme al autovector asignado a dicho autovalor, y aumentar las subpoblaciones que han disminuido, hasta llegar otra vez al estado libre de enfermedad. Por lo tanto, se puede decir que el estado de equilibrio es, por lo menos, localmente estable.El numero de reproducción uno manifestación de todos los valores propios de la matriz jacobiana en el equilibrio. Considere un modelo SIR como en la sección anterior con un muerto y tarifas un recién nacido ¿ y ¿ respectivamente. La matriz Jacobiana característicaEl papel del número de reproducción en el estudio de la enfermedad no sólo se limitará a hacer predicciones sobre el estado libre de la enfermedad. En condiciones R0 también puede ser un parámetro útil en el estudio de otros estados de equilibrio de las enfermedades, donde la definición inicial hecha por los epidemiólogos no se puede aplicar a las situaciones específicas
An SIRS Epidemic Model Supervised by a Control System for Vaccination and Treatment Actions Which Involve First-Order Dynamics and Vaccination of Newborns
This paper analyses an SIRS epidemic model with the vaccination of susceptible individuals and treatment of infectious ones. Both actions are governed by a designed control system whose inputs are the subpopulations of the epidemic model. In addition, the vaccination of a proportion of newborns is considered. The control reproduction number Rc of the controlled epidemic model is calculated, and its influence in the existence and stability of equilibrium points is studied. If such a number is smaller than a threshold value R¯¯¯c, then the model has a unique equilibrium point: the so-called disease-free equilibrium point at which there are not infectious individuals. Furthermore, such an equilibrium point is locally and globally asymptotically stable. On the contrary, if Rc>R¯¯¯c, then the model has two equilibrium points: the referred disease-free one, which is unstable, and an endemic one at which there are infectious individuals. The proposed control strategy provides several free-design parameters that influence both values Rc and R¯¯¯c. Then, such parameters can be appropriately adjusted for guaranteeing the non-existence of the endemic equilibrium point and, in this way, eradicating the persistence of the infectious disease.This research received support from the Spanish Government through grant RTI2018-094336-B-I00 (MCIU/AEI/FEDER, UE)
On a New Epidemic Model with Asymptomatic and Dead-Infective Subpopulations with Feedback Controls Useful for Ebola Disease
This paper studies the nonnegativity and local and global stability properties of the solutions of a newly proposed SEIADR model which incorporates asymptomatic and dead-infective subpopulations into the standard SEIR model and, in parallel, it incorporates feedback vaccination plus a constant term on the susceptible and feedback antiviral treatment controls on the symptomatic infectious subpopulation. A third control action of impulsive type (or “culling”) consists of the periodic retirement of all or a fraction of the lying corpses which can become infective in certain diseases, for instance, the Ebola infection. The three controls are allowed to be eventually time varying and contain a total of four design control gains. The local stability analysis around both the disease-free and endemic equilibrium points is performed by the investigation of the eigenvalues of the corresponding Jacobian matrices. The global stability is formally discussed by using tools of qualitative theory of differential equations by using Gauss-Stokes and Bendixson theorems so that neither Lyapunov equation candidates nor the explicit solutions are used. It is proved that stability holds as a parallel property to positivity and that disease-free and the endemic equilibrium states cannot be simultaneously either stable or unstable. The periodic limit solution trajectories and equilibrium points are analyzed in a combined fashion in the sense that the endemic periodic solutions become, in particular, equilibrium points if the control gains converge to constant values and the control gain for culling the infective corpses is asymptotically zeroed.This research is supported by the Spanish Government and the European Fund of Regional Development FEDER through Grant DPI2015-64766-R
On a Discrete SEIR Epidemic Model with Two-Doses Delayed Feedback Vaccination Control on the Susceptible
A new discrete susceptible-exposed-infectious-recovered (SEIR) epidemic model is presented subject to a feedback vaccination effort involving two doses. Both vaccination doses, which are subject to a non-necessarily identical effectiveness, are administrated by respecting a certain mutual delay interval, and their immunity effect is registered after a certain delay since the second dose. The delays and the efficacies of the doses are parameters, which can be fixed in the model for each concrete experimentation. The disease-free equilibrium point is characterized as well as its stability properties, while it is seen that no endemic equilibrium point exists. The exposed subpopulation is supposed to be infective eventually, under a distinct transmission rate of that of the infectious subpopulation. Some simulation examples are presented by using disease parameterizations of the COVID-19 pandemic under vaccination efforts requiring two doses.This research was funded by MCIU/AEI/FEDER, UE, grant number RTI2018-094336-B-I00; Spanish Institute of Health Carlos III, grant number COV 20/01213 and Basque Government, grant number IT1207-19. The APC was funded by MCIU/AEI/FEDER, UE
Some Formal Results on Positivity, Stability, and Endemic Steady-State Attainability Based on Linear Algebraic Tools for a Class of Epidemic Models with Eventual Incommensurate Delays
A formal description of typical compartmental epidemic models obtained is presented by splitting the state into an infective substate, or infective compartment, and a noninfective substate, or noninfective compartment. A general formal study to obtain the reproduction number and discuss the positivity and stability properties of equilibrium points is proposed and formally discussed. Such a study unifies previous related research and it is based on linear algebraic tools to investigate the positivity and the stability of the linearized dynamics around the disease-free and endemic equilibrium points. To this end, the complete state vector is split into the dynamically coupled infective and noninfective compartments each one containing the corresponding state components. The study is then extended to the case of commensurate internal delays when all the delays are integer multiples of a base delay. Two auxiliary delay-free systems are defined related to the linearization processes around the equilibrium points which correspond to the zero delay, i.e., delay-free, and infinity delay cases. Those auxiliary systems are used to formulate stability and positivity properties independently of the delay sizes. Some examples are discussed to the light of the developed formal study.The authors are grateful to the Spanish Government for Grants DPI2015-64766-R, RTI2018-094336-B-I00, and DPI2016-77271-R (MINECO/FEDER, UE)
On the Use of Entropy Issues to Evaluate and Control the Transients in Some Epidemic Models
This paper studies the representation of a general epidemic model by means of a first-order differential equation with a time-varying log-normal type coefficient. Then the generalization of the first-order differential system to epidemic models with more subpopulations is focused on by introducing the inter-subpopulations dynamics couplings and the control interventions information through the mentioned time-varying coefficient which drives the basic differential equation model. It is considered a relevant tool the control intervention of the infection along its transient to fight more efficiently against a potential initial exploding transmission. The study is based on the fact that the disease-free and endemic equilibrium points and their stability properties depend on the concrete parameterization while they admit a certain design monitoring by the choice of the control and treatment gains and the use of feedback information in the corresponding control interventions. Therefore, special attention is paid to the evolution transients of the infection curve, rather than to the equilibrium points, in terms of the time instants of its first relative maximum towards its previous inflection time instant. Such relevant time instants are evaluated via the calculation of an “ad hoc” Shannon’s entropy. Analytical and numerical examples are included in the study in order to evaluate the study and its conclusions.This research was funded by MCIU/AEI/FEDER, UE, grant number RTI2018-094902-B-C22 and the APC was funded by RTI2018-094902-B-C22
Supervision of the Infection in an SI (SI-RC) Epidemic Model by Using a Test Loss Function to Update the Vaccination and Treatment Controls
This paper studies and proposes some supervisory techniques to update the vaccination and control gains through time in a modified SI (susceptible-infectious) epidemic model involving the susceptible and subpopulations. Since the presence of linear feedback controls are admitted, a compensatory recovered (or immune) extra subpopulation is added to the model under zero initial conditions to deal with the recovered subpopulations transferred from the vaccination and antiviral/antibiotic treatment on the susceptible and the infectious, respectively. Therefore, the modified model is referred to as an SI(RC) epidemic model since it integrates the susceptible, infectious and compensatory recovered subpopulations. The defined time-integral supervisory loss function can evaluate weighted losses involving, in general, both the susceptible and the infectious subpopulations. It is admitted, as a valid supervisory loss function, that which involves only either the infectious or the susceptible subpopulations. Its concrete definition involving only the infectious is related to the Shannon information entropy. The supervision problem is basically based on the implementation of a parallel control structure with different potential control gains to be judiciously selected and updated through time. A higher decision level structure of the supervisory scheme updates the appropriate active controller (i.e., that with the control gain values to be used along the next time window), as well as the switching time instants. In this way, the active controller is that which provides the best associated supervisory loss function along the next inter-switching time interval. Basically, a switching action from one active controller to another one is decided as a better value of the supervisory loss function is detected for distinct controller gain values to the current ones.The authors are grateful to the Spanish Government for Grants RTI2018-094336-B-I00 and RTI2018-094902-B-C22 (MCIU/AEI/FEDER, UE), to the Institute of Health Carlos III for Grant COV20/01213 and to the Basque Government for Grant IT1207-19. They also thank the referees for their useful suggestions and corrections
A Study on COVID-19 Incidence in Europe through Two SEIR Epidemic Models Which Consider Mixed Contagions from Asymptomatic and Symptomatic Individuals
The impact of the SARS-CoV-2 (COVID-19) on the world has been partially controlled through different measures of social isolation and prophylaxis. Two new SEIR (Susceptible-Exposed-Infected-Recovered) models are proposed in order to describe this spread through different countries of Europe. In both models the infectivity of the asymptomatic period during the exposed stage of the disease will be taken into account. The different transmission rates of the SEIR models are calculated by considering the different locations and, more importantly, the lockdown measures implemented in each region. A new classification of these intervention measures will be set and their influence on the values of the transmission rates will be estimated through regression analysis.The authors are grateful to the institute Carlos III for grant COV20/01213, to the Spanish Government for Grants RTI2018-094336-B-I00 and RTI2018-094902-BC22 (MCIU/AEI/FEDER, UE) and to the Basque Government for Grant IT1207-19
A Modelization of the Propagation of COVID-19 in Regions of Spain and Italy with Evaluation of the Transmission Rates Related to the Intervention Measures
Two discrete mathematical SIR models (Susceptible-Infectious-Recovered) are proposed for modelling the propagation of the SARS-CoV-2 (COVID-19) through Spain and Italy. One of the proposed models is delay-free while the other one considers a delay in the propagation of the infection. The objective is to estimate the transmission, also known as infectivity rate, through time taking into account the infection evolution data supplied by the official health care systems in both countries. Such a parameter is estimated through time at different regional levels and it is seen to be strongly dependent on the intervention measures such as the total (except essential activities) or partial levels of lockdown. Typically, the infectivity rate evolves towards a minimum value under total lockdown and it increases again when the confinement measures are partially or totally removed.The authors are grateful to the institute Carlos III for grant COV20/01213, to the Spanish Government for Grants RTI2018- 094336-B-I00 and RTI2018-094902-B-C22 (MCIU/AEI/FEDER, UE) and to the Basque Government for Grant IT1207-19
Shared decision making in patients with substance use disorders : A one-year follow-up study
Patient-centered care in therapeutic processes has been associated with better clinical outcomes, however, it remains a poorly studied aspect in Substance Use Disorder (SUD). The study aimed to evaluate patient's preferences, perceived participation in treatment decisions and activation level; and how they predict retention, pharmacological adherence and substance use during one-year follow-up. Logistic regression models were used to analyze the association between independent variables, along with a wide number of sociodemographic and clinical covariates, and outcomes. Most patients prefer a shared or passive role when making decisions about their treatment, and showed concordance between their preferred and perceived roles. In the univariate models, perceiving more involvement than desired showed a higher likelihood of treatment discontinuation at 12 months, and substance use at 6 and 12 months. No significant associations were found between the remaining decisional variables or the degree of activation with the assessed outcomes. A majority of SUD patients prefer and perceive to be involved in the decision-making process about their treatment. Patients perceiving more involvement than desired might experience an excess of responsibility that could negatively influence treatment continuation and substance use. Limitations of the study preclude any definitive conclusion, and more research is needed to confirm these results