284 research outputs found

    From construction megaproject management to complex project management : a bibliographic analysis

    Get PDF
    2013-2014 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Re-expression of ARHI (DIRAS3) induces autophagy in breast cancer cells and enhances the inhibitory effect of paclitaxel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>ARHI </it>is a Ras-related imprinted gene that inhibits cancer cell growth and motility. ARHI is downregulated in the majority of breast cancers, and loss of its expression is associated with its progression from ductal carcinoma <it>in situ </it>(DCIS) to invasive disease. In ovarian cancer, re-expression of ARHI induces autophagy and leads to autophagic death in cell culture; however, ARHI re-expression enables ovarian cancer cells to remain dormant when they are grown in mice as xenografts. The purpose of this study is to examine whether ARHI induces autophagy in breast cancer cells and to evaluate the effects of ARHI gene re-expression in combination with paclitaxel.</p> <p>Methods</p> <p>Re-expression of ARHI was achieved by transfection, by treatment with trichostatin A (TSA) or by a combination of TSA and 5-aza-2'-deoxycytidine (DAC) in breast cancer cell cultures and by liposomal delivery of ARHI in breast tumor xenografts.</p> <p>Results</p> <p>ARHI re-expression induces autophagy in breast cancer cells, and ARHI is essential for the induction of autophagy. When ARHI was re-expressed in breast cancer cells treated with paclitaxel, the growth inhibitory effect of paclitaxel was enhanced in both the cell culture and the xenografts. Although paclitaxel alone did not induce autophagy in breast cancer cells, it enhanced ARHI-induced autophagy. Conversely, ARHI re-expression promoted paclitaxel-induced apoptosis and G2/M cell cycle arrest.</p> <p>Conclusions</p> <p>ARHI re-expression induces autophagic cell death in breast cancer cells and enhances the inhibitory effects of paclitaxel by promoting autophagy, apoptosis, and G2/M cell cycle arrest.</p

    A Novel Non-Lens βγ−Crystallin and Trefoil Factor Complex from Amphibian Skin and Its Functional Implications

    Get PDF
    In vertebrates, non-lens betagamma-crystallins are widely expressed in various tissues, but their functions are unknown. The molecular mechanisms of trefoil factors, initiators of mucosal healing and being greatly involved in tumorigenesis, have remained elusive.A naturally existing 72-kDa complex of non-lens betagamma-crystallin (alpha-subunit) and trefoil factor (beta-subunit), named betagamma-CAT, was identified from frog Bombina maxima skin secretions. Its alpha-subunit and beta-subunit (containing three trefoil factor domains), with a non-covalently linked form of alphabeta(2), show significant sequence homology to ep37 proteins, a group of non-lens betagamma-crystallins identified in newt Cynops pyrrhogaster and mammalian trefoil factors, respectively. betagamma-CAT showed potent hemolytic activity on mammalian erythrocytes. The specific antiserum against each subunit was able to neutralize its hemolytic activity, indicating that the two subunits are functionally associated. betagamma-CAT formed membrane pores with a functional diameter about 2.0 nm, leading to K(+) efflux and colloid-osmotic hemolysis. High molecular weight SDS-stable oligomers (>240-kDa) were detected by antibodies against the alpha-subunit with Western blotting. Furthermore, betagamma-CAT showed multiple cellular effects on human umbilical vein endothelial cells. Low dosages of betagamma-CAT (25-50 pM) were able to stimulate cell migration and wound healing. At high concentrations, it induced cell detachment (EC(50) 10 nM) and apoptosis. betagamma-CAT was rapidly endocytosed via intracellular vacuole formation. Under confocal microscope, some of the vacuoles were translocated to nucleus and partially fused with nuclear membrane. Bafilomycin A1 (a specific inhibitor of the vacuolar-type ATPase) and nocodazole (an agent of microtuble depolymerizing), while inhibited betagamma-CAT induced vacuole formation, significantly inhibited betagamma-CAT induced cell detachment, suggesting that betagamma-CAT endocytosis is important for its activities.These findings illustrate novel cellular functions of non-lens betagamma-cyrstallins and action mechanism via association with trefoil factors, serving as clues for investigating the possible occurrence of similar molecules and action mechanisms in mammals

    Malignant phyllodes tumors display mesenchymal stem cell features and aldehyde dehydrogenase/disialoganglioside identify their tumor stem cells

    Get PDF
    INTRODUCTION: Although breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem cells (CSCs) in phyllodes tumors. METHODS: Paraffin sections of malignant phyllodes tumors were examined for various markers by immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice and their ability to undergo differentiation. RESULTS: Immunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106, CD166, CD105, CD90, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7 clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes tumors examined, albeit to different extents. Four xenografts were successfully established from human primary phyllodes tumors. In vitro, ALDH(+) cells sorted from xenografts displayed approximately 10-fold greater mammosphere-forming capacity than ALDH(-) cells. GD2(+) cells showed a 3.9-fold greater capacity than GD2(-) cells. ALDH(+)/GD2(+)cells displayed 12.8-fold greater mammosphere forming ability than ALDH(-)/GD2(-) cells. In vivo, the tumor-initiating frequency of ALDH(+)/GD2(+) cells were up to 33-fold higher than that of ALDH(+) cells, with as few as 50 ALDH(+)/GD2(+) cells being sufficient for engraftment. Moreover, we provided the first evidence for the induction of ALDH(+)/GD2(+) cells to differentiate into neural cells of various lineages, along with the observation of neural differentiation in clinical specimens and xenografts of malignant phyllodes tumors. ALDH(+) or ALDH(+)/GD2(+) cells could also be induced to differentiate into adipocytes, osteocytes or chondrocytes. CONCLUSIONS: Our findings revealed that malignant phyllodes tumors possessed many characteristics of MSC, and their CSCs were enriched in ALDH(+) and ALDH(+)/GD2(+) subpopulations

    Methylenetetrahydrofolate reductase C677T polymorphism in patients with gastric and colorectal cancer in a Korean population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was designed to investigate an association between the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and the risk of gastric and colorectal cancer in the Korean population.</p> <p>Methods</p> <p>We conducted a population-based large-scale case-control study involving 2,213 patients with newly diagnosed gastric cancer, 1,829 patients with newly diagnosed colorectal cancer, and 1,700 healthy controls. Genotyping was performed with peripheral blood DNA for MTHFR C677T polymorphisms. The statistical significance was estimated by logistic regression analysis.</p> <p>Results</p> <p>The MTHFR C677T frequencies of CC, CT, and TT genotypes were 35.2%, 47.5%, and 17.3% among stomach cancer, 34%, 50.5%, and 15.5% in colorectal cancer, and 31.8%, 50.7%, and 17.5% in the controls, respectively. The MTHFR 677TT genotype showed a weak opposite association with colorectal cancer compared to the homozygous CC genotype [adjusted age and sex odds ratio (OR) = 0.792, 95% confidence interval (CI) = 0.638-0.984, <it>P </it>= 0.035]. Subjects with the MTHFR 677CT showed a significantly reduced risk of gastric cancer compared whose with the 677CC genotype (age- and sex-adjusted OR = 0.810; 95% CI = 0.696-0.942, <it>P </it>= 0.006). We also observed no significant interactions between the MTHFR C677T polymorphism and smoking or drinking in the risk of gastric and colorectal cancer.</p> <p>Conclusions</p> <p>The T allele was found to provide a weak protective association with gastric cancer and colorectal cancer.</p

    Clustering-based approaches to SAGE data mining

    Get PDF
    Serial analysis of gene expression (SAGE) is one of the most powerful tools for global gene expression profiling. It has led to several biological discoveries and biomedical applications, such as the prediction of new gene functions and the identification of biomarkers in human cancer research. Clustering techniques have become fundamental approaches in these applications. This paper reviews relevant clustering techniques specifically designed for this type of data. It places an emphasis on current limitations and opportunities in this area for supporting biologically-meaningful data mining and visualisation

    Redeployment-based drug screening identifies the anti-helminthic niclosamide as anti-myeloma therapy that also reduces free light chain production

    Get PDF
    Despite recent therapeutic advancements, multiple myeloma (MM) remains incurable and new therapies are needed, especially for the treatment of elderly and relapsed/refractory patients. We have screened a panel of 100 off-patent licensed oral drugs for anti-myeloma activity and identified niclosamide, an anti-helminthic. Niclosamide, at clinically achievable non-toxic concentrations, killed MM cell lines and primary MM cells as efficiently as or better than standard chemotherapy and existing anti-myeloma drugs individually or in combinations, with little impact on normal donor cells. Cell death was associated with markers of both apoptosis and autophagy. Importantly, niclosamide rapidly reduced free light chain (FLC) production by MM cell lines and primary MM. FLCs are a major cause of renal impairment in MM patients and light chain amyloid and FLC reduction is associated with reversal of tissue damage. Our data indicate that niclosamides anti-MM activity was mediated through the mitochondria with rapid loss of mitochondrial membrane potential, uncoupling of oxidative phosphorylation and production of mitochondrial superoxide. Niclosamide also modulated the nuclear factor-κB and STAT3 pathways in MM cells. In conclusion, our data indicate that MM cells can be selectively targeted using niclosamide while also reducing FLC secretion. Importantly, niclosamide is widely used at these concentrations with minimal toxicity

    The Role of SDF-1-CXCR4/CXCR7 Axis in the Therapeutic Effects of Hypoxia-Preconditioned Mesenchymal Stem Cells for Renal Ischemia/Reperfusion Injury

    Get PDF
    In vitro hypoxic preconditioning (HP) of mesenchymal stem cells (MSCs) could ameliorate their viability and tissue repair capabilities after transplantation into the injured tissue through yet undefined mechanisms. There is also experimental evidence that HP enhances the expression of both stromal-derived factor-1 (SDF-1) receptors, CXCR4 and CXCR7, which are involved in migration and survival of MSCs in vitro, but little is known about their role in the in vivo therapeutic effectiveness of MSCs in renal ischemia/reperfusion (I/R) injury. Here, we evaluated the role of SDF-1-CXCR4/CXCR7 pathway in regulating chemotaxis, viability and paracrine actions of HP-MSCs in vitro and in vivo. Compared with normoxic preconditioning (NP), HP not only improved MSC chemotaxis and viability but also stimulated secretion of proangiogenic and mitogenic factors. Importantly, both CXCR4 and CXCR7 were required for the production of paracrine factors by HP-MSCs though the former was only responsible for chemotaxis while the latter was for viability. SDF-1α expression was upregulated in postischemic kidneys. After 24 h systemical administration following I/R, HP-MSCs but not NP-MSCs were selectively recruited to ischemic kidneys and this improved recruitment was abolished by neutralization of CXCR4, but not CXCR7. Furthermore, the increased recruitment of HP-MSCs was associated with enhanced functional recovery, accelerated mitogenic response, and reduced apoptotic cell death. In addition, neutralization of either CXCR4 or CXCR7 impaired the improved therapeutic potential of HP-MSCs. These results advance our knowledge about SDF-1-CXCR4/CXCR7 axis as an attractive target pathway for improving the beneficial effects of MSC-based therapies for renal I/R
    corecore