2,829 research outputs found

    Comparison of conventional and CT-based planning for intracavitary brachytherapy for cervical cancer: target volume coverage and organs at risk doses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare intracavitary brachytherapy (ICBT) planning methods for cervical cancer, based on either orthogonal radiographs (conventional plan) or CT sections (CT plan); the comparison focused on target volume coverage and dose volume analysis of organs at risk (OARs), by representing point doses defined by the International Commission on Radiation Units and Measurement (ICRU) and dose volume histograms (DVHs) from 3D planning.</p> <p>Methods</p> <p>We analyzed the dosimetric data for 62 conventional and CT-based ICBT plans. The gross tumor volume (GTV), clinical target volume (CTV) and organs at risk (OAR)s were contoured on the CT-plan. Point A and ICRU 38 rectal and bladder points were defined on reconstructed CT images.</p> <p>Results</p> <p>Patients were categorized on the basis of whether the >95% isodose line of the point-A prescription dose encompassed the CTV (group 1, n = 24) or not (group 2, n = 38). The mean GTV and CTV (8.1 cc and 20.6 cc) were smaller in group 1 than in group 2 (24.7 cc and 48.4 cc) (<it>P <</it>0.001). The mean percentage of GTV and CTV coverage with the 7 Gy isodose was 93.1% and 88.2% for all patients, and decreased with increasing tumor size and stage. The mean D2 and D5 rectum doses were 1.66 and 1.42 times higher than the corresponding ICRU point doses and the mean D2 and D5 bladder doses were 1.51 and 1.28 times higher. The differences between the ICRU dose and the D2 and D5 doses were significantly higher in group 2 than in group 1 for the bladder, but not for the rectum.</p> <p>Conclusion</p> <p>The CT-plan is superior to the conventional plan in target volume coverage and appropriate evaluation of OARs, as the conventional plan overestimates tumor doses and underestimates OAR doses.</p

    Numerical Hermitian Yang-Mills Connections and Vector Bundle Stability in Heterotic Theories

    Get PDF
    A numerical algorithm is presented for explicitly computing the gauge connection on slope-stable holomorphic vector bundles on Calabi-Yau manifolds. To illustrate this algorithm, we calculate the connections on stable monad bundles defined on the K3 twofold and Quintic threefold. An error measure is introduced to determine how closely our algorithmic connection approximates a solution to the Hermitian Yang-Mills equations. We then extend our results by investigating the behavior of non slope-stable bundles. In a variety of examples, it is shown that the failure of these bundles to satisfy the Hermitian Yang-Mills equations, including field-strength singularities, can be accurately reproduced numerically. These results make it possible to numerically determine whether or not a vector bundle is slope-stable, thus providing an important new tool in the exploration of heterotic vacua.Comment: 52 pages, 15 figures. LaTex formatting of figures corrected in version 2

    Smoking and COX-2 Functional Polymorphisms Interact to Increase the Risk of Gastric Cardia Adenocarcinoma in Chinese Population

    Get PDF
    BACKGROUND: Over-expression and increased activity of cyclooxygenase (COX)-2 induced by smoking has been implicated in the development of cancer. This study aimed to explore the interaction between smoking and functional polymorphisms of COX-2 in modulation of gastric cardia adenocarcinoma (GCA) risk. METHODS AND FINDINGS: Three COX-2 polymorphisms, including -1195G>A (rs689466), -765G>C (rs20417), and 587Gly>Arg (rs3218625), were genotyped in 357 GCA patients and 985 controls. In the multivariate logistic regression analysis, we found that the -1195AA, -765GC, and 587Arg/Arg genotypes were associated with increased risk of GCA (OR = 1.50, 95% CI = 1.05-2.13; OR = 2.06, 95% CI = 1.29-3.29 and OR = 1.67, 95% CI = 1.04-2.66, respectively). Haplotype association analysis showed that compared with G(-1195)-G(-765)- G(Gly587Arg), the A(-1195)-C(-765)-A(Gly587Arg) conferred an increased risk of GCA (OR = 2.49, 95% CI = 1.54-4.01). Moreover, significant multiplicative interactions were observed between smoking and these three polymorphisms of -1195G>A, -765G>C, and 587Gly>Arg, even after correction by false discovery rate (FDR) method for multiple comparisons (FDR-P(interaction) = 0.006, 5.239×10(-4) and 0.017, respectively). Similarly, haplotypes incorporating these three polymorphisms also showed significant interaction with smoking in the development of GCA (P for multiplicative interaction = 2.65×10(-6)). CONCLUSION: These findings indicated that the functional polymorphisms of COX-2, in interaction with smoking, may play a substantial role in the development of GCA

    Determining the Veracity of Rumours on Twitter

    Get PDF
    While social networks can provide an ideal platform for up-to-date information from individuals across the world, it has also proved to be a place where rumours fester and accidental or deliberate mis- information often emerges. In this article, we aim to support the task of making sense from social media data, and specifically, seek to build an autonomous message-classifier that filters relevant and trustworthy information from Twitter. For our work, we collected about 100 million public tweets, including users’ past tweets, from which we identified 72 rumours (41 true, 31 false). We considered over 80 trustworthiness measures including the authors’ profile and past behaviour, the social network connections (graphs), and the content of tweets themselves. We ran modern machine-learning classifiers over those measures to produce trustworthiness scores at various time windows from the outbreak of the rumour. Such time-windows were key as they allowed useful insight into the progression of the rumours. From our findings, we identified that our model was significantly more accurate than similar studies in the literature. We also identified critical attributes of the data that give rise to the trustworthiness scores assigned. Finally we developed a software demonstration that provides a visual user interface to allow the user to examine the analysis

    Skeletal Adaptation to Intramedullary Pressure-Induced Interstitial Fluid Flow Is Enhanced in Mice Subjected to Targeted Osteocyte Ablation

    Get PDF
    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF

    Association study with Wegener granulomatosis of the human phospholipase Cγ2 gene

    Get PDF
    BACKGROUND: Wegener Granulomatosis (WG) is a multifactorial disease of yet unknown aetiology characterized by granulomata of the respiratory tract and systemic necrotizing vasculitis. Analyses of candidate genes revealed several associations, e.g. with α(1)-antitrypsin, proteinase 3 and with the HLA-DPB1 locus. A mutation in the abnormal limb mutant 5 (ALI5) mouse in the region coding for the hydrophobic ridge loop 3 (HRL3) of the phospholipaseCγ2 (PLCγ-2) gene, corresponding to human PLCγ-2 exon 27, leads to acute and chronic inflammation and granulomatosis. For that reason, we screened exons 11, 12 and 13 coding for the hydrophobic ridge loop 1 and 2 (HRL1 and 2, respectively) and exon 27 of the PLCγ-2 protein by single strand conformation polymorphism (SSCP), sequencing and PCR/ restriction fragment length polymorphism (RFLP) analyses. In addition, we screened indirectly for disease association via 4 microsatellites with pooled DNA in the PLCγ-2 gene. RESULTS: Although a few polymorphisms in these distinct exons were observed, significant differences in allele frequencies were not identified between WG patients and respective controls. In addition, the microsatellite analyses did not reveal a significant difference between our patient and control cohort. CONCLUSION: This report does not reveal any hints for an involvement of the PLCγ-2 gene in the pathogenesis of WG in our case-control study

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    Chiral plasmonics of self-assembled nanorod dimers

    Get PDF
    Chiral nanoscale photonic systems typically follow either tetrahedral or helical geometries that require four or more different constituent nanoparticles. Smaller number of particles and different chiral geometries taking advantage of the self-organization capabilities of nanomaterials will advance understanding of chiral plasmonic effects, facilitate development of their theory, and stimulate practical applications of chiroplasmonics. Here we show that gold nanorods self-assemble into side-by-side orientated pairs and ‘‘ladders’’ in which chiral properties originate from the small dihedral angle between them. Spontaneous twisting of one nanorod versus the other one breaks the centrosymmetric nature of the parallel assemblies. Two possible enantiomeric conformations with positive and negative dihedral angles were obtained with different assembly triggers. The chiral nature of the angled nanorod pairs was confirmed by 4p full space simulations and the first example of single-particle CD spectroscopy. Self-assembled nanorod pairs and ‘‘ladders’’ enable the development of chiral metamaterials, (bio)sensors, and new catalytic processes
    corecore