70 research outputs found

    Contrasting Population Structures of the Genes Encoding Ten Leading Vaccine-Candidate Antigens of the Human Malaria Parasite, Plasmodium falciparum

    Get PDF
    The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and glurp; the merozoite antigens eba175, ama1, msp's 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens to be incorporated into the design of next-generation malaria vaccines

    Mutagenesis and Functional Studies with Succinate Dehydrogenase Inhibitors in the Wheat Pathogen Mycosphaerella graminicola

    Get PDF
    A range of novel carboxamide fungicides, inhibitors of the succinate dehydrogenase enzyme (SDH, EC 1.3.5.1) is currently being introduced to the crop protection market. The aim of this study was to explore the impact of structurally distinct carboxamides on target site resistance development and to assess possible impact on fitness

    Functional Memory B Cells and Long-Lived Plasma Cells Are Generated after a Single Plasmodium chabaudi Infection in Mice

    Get PDF
    Antibodies have long been shown to play a critical role in naturally acquired immunity to malaria, but it has been suggested that Plasmodium-specific antibodies in humans may not be long lived. The cellular mechanisms underlying B cell and antibody responses are difficult to study in human infections; therefore, we have investigated the kinetics, duration and characteristics of the Plasmodium-specific memory B cell response in an infection of P. chabaudi in mice. Memory B cells and plasma cells specific for the C-terminal region of Merozoite Surface Protein 1 were detectable for more than eight months following primary infection. Furthermore, a classical memory response comprised predominantly of the T-cell dependent isotypes IgG2c, IgG2b and IgG1 was elicited upon rechallenge with the homologous parasite, confirming the generation of functional memory B cells. Using cyclophosphamide treatment to discriminate between long-lived and short-lived plasma cells, we demonstrated long-lived cells secreting Plasmodium-specific IgG in both bone marrow and in spleens of infected mice. The presence of these long-lived cells was independent of the presence of chronic infection, as removal of parasites with anti-malarial drugs had no impact on their numbers. Thus, in this model of malaria, both functional Plasmodium-specific memory B cells and long-lived plasma cells can be generated, suggesting that defects in generating these cell populations may not be the reason for generating short-lived antibody responses

    Adenovirus-5-Vectored P. falciparum Vaccine Expressing CSP and AMA1. Part B: Safety, Immunogenicity and Protective Efficacy of the CSP Component

    Get PDF
    Background: A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge.\ud \ud Methodology/Principal Findings: NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP). It is one component of a two-component vaccine NMRC-M3V-Ad-PfCA consisting of one adenovector encoding CSP and one encoding apical membrane antigen-1 (AMA1) that was evaluated for safety and immunogenicity in an earlier study (see companion paper, Sedegah et al). Fourteen Ad5 seropositive or negative adults received two doses of NMRC-MV-Ad-PfC sixteen weeks apart, at 1x1010 particle units per dose. The vaccine was safe and well tolerated. All volunteers developed positive ELISpot responses by 28 days after the first immunization (geometric mean 272 spot forming cells/million[sfc/m]) that declined during the following 16 weeks and increased after the second dose to levels that in most cases were less than the initial peak (geometric mean 119 sfc/m). CD8+ predominated over CD4+ responses, as in the first clinical trial. Antibody responses were poor and like ELISpot responses increased after the second immunization but did not exceed the initial peak. Pre-existing neutralizing antibodies (NAb) to Ad5 did not affect the immunogenicity of the first dose, but the fold increase in NAb induced by the first dose was significantly associated with poorer antibody responses after the second dose, while ELISpot responses remained unaffected. When challenged by the bite of P. falciparum-infected mosquitoes, two of 11 volunteers showed a delay in the time to patency compared to infectivity controls, but no volunteers were sterilely protected.\ud \ud Significance: The NMRC-MV-Ad-PfC vaccine expressing CSP was safe and well tolerated given as two doses, but did not provide sterile protection

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF

    Accurate prediction of response to endocrine therapy in breast cancer patients: current and future biomarkers

    Get PDF
    WOS: 000390900700001PubMed ID: 27903276Approximately 70% of patients have breast cancers that are oestrogen receptor alpha positive (ER+) and are therefore candidates for endocrine treatment. Many of these patients relapse in the years during or following completion of adjuvant endocrine therapy. Thus, many ER+ cancers have primary resistance or develop resistance to endocrine therapy during treatment. Recent improvements in our understanding of how tumours evolve during treatment with endocrine agents have identified both changes in gene expression and mutational profiles, in the primary cancer as well as in circulating tumour cells. Analysing these changes has the potential to improve the prediction of which specific patients will respond to endocrine treatment. Serially profiled biopsies during treatment in the neoadjuvant setting offer promise for accurate and early prediction of response to both current and novel drugs and allow investigation of mechanisms of resistance. In addition, recent advances in monitoring tumour evolution through non-invasive (liquid) sampling of circulating tumour cells and cell-free tumour DNA may provide a method to detect resistant clones and allow implementation of personalized treatments for metastatic breast cancer patients. This review summarises current and future biomarkers and signatures for predicting response to endocrine treatment, and discusses the potential for using approved drugs and novel agents to improve outcomes. Increased prediction accuracy is likely to require sequential sampling, utilising preoperative or neoadjuvant treatment and/or liquid biopsies and an improved understanding of both the dynamics and heterogeneity of breast cancer.European CommissionEuropean Commission Joint Research Centre [658170]This work was funded by the European Commission H2020 Marie Sklodowska Curie Action Individual Fellowship (H2020-MSCA-IF, 658170) to CS and Breast Cancer Now to JMD and AHS
    corecore