233 research outputs found

    The burden of neglected tropical diseases in Ethiopia, and opportunities for integrated control and elimination

    Get PDF
    Background: Neglected tropical diseases (NTDs) are a group of chronic parasitic diseases and related conditions that are the most common diseases among the 2·7 billion people globally living on less than US$2 per day. In response to the growing challenge of NTDs, Ethiopia is preparing to launch a NTD Master Plan. The purpose of this review is to underscore the burden of NTDs in Ethiopia, highlight the state of current interventions, and suggest ways forward. Results: This review indicates that NTDs are significant public health problems in Ethiopia. From the analysis reported here, Ethiopia stands out for having the largest number of NTD cases following Nigeria and the Democratic Republic of Congo. Ethiopia is estimated to have the highest burden of trachoma, podoconiosis and cutaneous leishmaniasis in sub-Saharan Africa (SSA), the second highest burden in terms of ascariasis, leprosy and visceral leishmaniasis, and the third highest burden of hookworm. Infections such as schistosomiasis, trichuriasis, lymphatic filariasis and rabies are also common. A third of Ethiopians are infected with ascariasis, one quarter is infected with trichuriasis and one in eight Ethiopians lives with hookworm or is infected with trachoma. However, despite these high burdens of infection, the control of most NTDs in Ethiopia is in its infancy. In terms of NTD control achievements, Ethiopia reached the leprosy elimination target of 1 case/10,000 population in 1999. No cases of human African trypanosomiasis have been reported since 1984. Guinea worm eradication is in its final phase. The Onchocerciasis Control Program has been making steady progress since 2001. A national blindness survey was conducted in 2006 and the trachoma program has kicked off in some regions. Lymphatic Filariasis, podoconiosis and rabies mapping are underway. Conclusion: Ethiopia bears a significant burden of NTDs compared to other SSA countries. To achieve success in integrated control of NTDs, integrated mapping, rapid scale up of interventions and operational research into co implementation of intervention packages will be crucial

    Systematic Development of the YouRAction program, a computer-tailored Physical Activity promotion intervention for Dutch adolescents, targeting personal motivations and environmental opportunities

    Get PDF
    Background. Increasing physical activity (PA) among adolescents is an important health promotion goal. PA has numerous positive health effects, but the majority of Dutch adolescents do not meet PA requirements. The present paper describes the systematic development of a theory-based computer-tailored intervention, YouRAction, which targets individual and environmental factors determining PA among adolescents. Design. The intervention development was guided by the Intervention Mapping protocol, in order to define clear program objectives, theoretical methods and practical strategies, ensure systematic program planning and pilot-testing, and anticipate on implementation and evaluation. Two versions of YouRAction were developed: one that targets individual determinants and an extended version that also provides feedback on opportunities to be active in the neighbourhood. Key determinants that were targeted included: knowledge and awareness, attitudes, self-efficacy and subjective norms. The extended version also addressed perceived availability of neighbourhood PA facilities. Both versions aimed to increase levels of moderate-to-vigorous PA among adolescents. The intervention structure was based on self-regulation theory, comprising of five steps in the process of successful goal pursuit. Monitoring of PA behaviour and behavioural and normative feedback were used to increase awareness of PA behaviour; motivation was enhanced by targeting self-efficacy and attitudes, by means of various interactive strategies, such as web movies; the perceived environment was targeted by visualizing opportunities to be active in an interactive geographical map of the home environment; in the goal setting phase, the adolescents were guided in setting a goal and developing an action plan to achieve this goal; in the phase of active goal pursuit adolescents try to achieve their goal and in the evaluation phase the achievements are evaluated. Based on the results of the evaluation adolescents could revise their goal or choose another behaviour to focus on. The intervention is delivered in a classroom setting in three lessons. YouRAction will be evaluated in a cluster-randomized trial, with classes as unit of randomization. Evaluation will focus on PA outcomes, cognitive mediators/moderators and process measures. Discussion. The planned development of YouRAction resulted in two computer-tailored interventions aimed at the promotion of PA in a Dutch secondary school setting. Trial registration. NTR1923

    Stability and change in screen-based sedentary behaviours and associated factors among Norwegian children in the transition between childhood and adolescence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to inform interventions to prevent sedentariness, more longitudinal studies are needed focusing on stability and change over time in multiple sedentary behaviours. This paper investigates patterns of stability and change in TV/DVD use, computer/electronic game use and total screen time (TST) and factors associated with these patterns among Norwegian children in the transition between childhood and adolescence.</p> <p>Methods</p> <p>The baseline of this longitudinal study took place in September 2007 and included 975 students from 25 control schools of an intervention study, the HEalth In Adolescents (HEIA) study. The first follow-up took place in May 2008 and the second follow-up in May 2009, with 885 students participating at all time points (average age at baseline = 11.2, standard deviation ± 0.3). Time used for/spent on TV/DVD and computer/electronic games was self-reported, and a TST variable (hours/week) was computed. Tracking analyses based on absolute and rank measures, as well as regression analyses to assess factors associated with change in TST and with tracking high TST were conducted.</p> <p>Results</p> <p>Time spent on all sedentary behaviours investigated increased in both genders. Findings based on absolute and rank measures revealed a fair to moderate level of tracking over the 2 year period. High parental education was inversely related to an increase in TST among females. In males, self-efficacy related to barriers to physical activity and living with married or cohabitating parents were inversely related to an increase in TST. Factors associated with tracking high vs. low TST in the multinomial regression analyses were low self-efficacy and being of an ethnic minority background among females, and low self-efficacy, being overweight/obese and not living with married or cohabitating parents among males.</p> <p>Conclusions</p> <p>Use of TV/DVD and computer/electronic games increased with age and tracked over time in this group of 11-13 year old Norwegian children. Interventions targeting these sedentary behaviours should thus be introduced early. The identified modifiable and non-modifiable factors associated with change in TST and tracking of high TST should be taken into consideration when planning such interventions.</p

    Structure and evolution of the mouse pregnancy-specific glycoprotein (Psg) gene locus

    Get PDF
    BACKGROUND: The pregnancy-specific glycoprotein (Psg) genes encode proteins of unknown function, and are members of the carcinoembryonic antigen (Cea) gene family, which is a member of the immunoglobulin gene (Ig) superfamily. In rodents and primates, but not in artiodactyls (even-toed ungulates / hoofed mammals), there have been independent expansions of the Psg gene family, with all members expressed exclusively in placental trophoblast cells. For the mouse Psg genes, we sought to determine the genomic organisation of the locus, the expression profiles of the various family members, and the evolution of exon structure, to attempt to reconstruct the evolutionary history of this locus, and to determine whether expansion of the gene family has been driven by selection for increased gene dosage, or diversification of function. RESULTS: We collated the mouse Psg gene sequences currently in the public genome and expressed-sequence tag (EST) databases and used systematic BLAST searches to generate complete sequences for all known mouse Psg genes. We identified a novel family member, Psg31, which is similar to Psg30 but, uniquely amongst mouse Psg genes, has a duplicated N1 domain. We also identified a novel splice variant of Psg16 (bCEA). We show that Psg24 and Psg30 / Psg31 have independently undergone expansion of N-domain number. By mapping BAC, YAC and cosmid clones we described two clusters of Psg genes, which we linked and oriented using fluorescent in situ hybridisation (FISH). Comparison of our Psg locus map with the public mouse genome database indicates good agreement in overall structure and further elucidates gene order. Expression levels of Psg genes in placentas of different developmental stages revealed dramatic differences in the developmental expression profile of individual family members. CONCLUSION: We have combined existing information, and provide new information concerning the evolution of mouse Psg exon organization, the mouse Psg genomic locus structure, and the expression patterns of individual Psg genes. This information will facilitate functional studies of this complex gene family

    Age-Related Neuronal Degeneration: Complementary Roles of Nucleotide Excision Repair and Transcription-Coupled Repair in Preventing Neuropathology

    Get PDF
    Neuronal degeneration is a hallmark of many DNA repair syndromes. Yet, how DNA damage causes neuronal degeneration and whether defects in different repair systems affect the brain differently is largely unknown. Here, we performed a systematic detailed analysis of neurodegenerative changes in mouse models deficient in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively, and that are associated with the UV-sensitive syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS). TCR–deficient Csa−/− and Csb−/− CS mice showed activated microglia cells surrounding oligodendrocytes in regions with myelinated axons throughout the nervous system. This white matter microglia activation was not observed in NER–deficient Xpa−/− and Xpc−/− XP mice, but also occurred in XpdXPCS mice carrying a point mutation (G602D) in the Xpd gene that is associated with a combined XPCS disorder and causes a partial NER and TCR defect. The white matter abnormalities in TCR–deficient mice are compatible with focal dysmyelination in CS patients. Both TCR–deficient and NER–deficient mice showed no evidence for neuronal degeneration apart from p53 activation in sporadic (Csa−/−, Csb−/−) or highly sporadic (Xpa−/−, Xpc−/−) neurons and astrocytes. To examine to what extent overlap occurs between both repair systems, we generated TCR–deficient mice with selective inactivation of NER in postnatal neurons. These mice develop dramatic age-related cumulative neuronal loss indicating DNA damage substrate overlap and synergism between TCR and NER pathways in neurons, and they uncover the occurrence of spontaneous DNA injury that may trigger neuronal degeneration. We propose that, while Csa−/− and Csb−/− TCR–deficient mice represent powerful animal models to study the mechanisms underlying myelin abnormalities in CS, neuron-specific inactivation of NER in TCR–deficient mice represents a valuable model for the role of NER in neuronal maintenance and survival

    Cementomimetics—constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides

    Get PDF
    This is the published version. Copyright 2012 Nature Publishing GroupCementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavior of the host elicited by an infectious biofilm adhering to the tooth root and left untreated, may lead to tooth loss. We describe a novel protocol for identifying peptide sequences from native proteins with the potential to repair damaged dental tissues by controlling hydroxyapatite biomineralization. Using amelogenin as a case study and a bioinformatics scoring matrix, we identified regions within amelogenin that are shared with a set of hydroxyapatite-binding peptides (HABPs) previously selected by phage display. One 22-amino acid long peptide regions referred to as amelogenin-derived peptide 5 (ADP5) was shown to facilitate cell-free formation of a cementum-like hydroxyapatite mineral layer on demineralized human root dentin that, in turn, supported attachment of periodontal ligament cells in vitro. Our findings have several implications in peptide-assisted mineral formation that mimic biomineralization. By further elaborating the mechanism for protein control over the biomineral formed, we afford new insights into the evolution of protein–mineral interactions. By exploiting small peptide domains of native proteins, our understanding of structure–function relationships of biomineralizing proteins can be extended and these peptides can be utilized to engineer mineral formation. Finally, the cementomimetic layer formed by ADP5 has the potential clinical application to repair diseased root surfaces so as to promote the regeneration of periodontal tissues and thereby reduce the morbidity associated with tooth loss
    corecore