26 research outputs found

    Expression of V1A and GRP receptors leads to cellular transformation and increased sensitivity to substance-P analogue-induced growth inhibition.

    Get PDF
    Small-cell lung cancer (SCLC) is a particularly aggressive cancer, which metastasises early. Despite initial sensitivity to radio- and chemo-therapy, it invariably relapses, so that the 2-year survival remains less than 5%. Neuropeptides particularly arginine vasopressin (AVP) and gastrin-releasing peptide (GRP) act as autocrine and paracrine growth factors and the expression of these and their receptors are a hallmark of the disease. Substance-P analogues including [D-Arg1,D-Phe5,D-Trp7,9,Leu11]-substance-P (SP-D) and [Arg6,D-Trp7,9,NmePhe8]-substance-P (6-11) (SP-G) inhibit the growth of SCLC cells by modulating neuropeptide signalling. We show that GRP and V1A receptors expression leads to the development of a transformed phenotype. Addition of neuropeptide provides some protection from etoposide-induced cytotoxicity. Receptor expression also leads to an increased sensitivity to substance-P analogue-induced growth inhibition. We show that SP-D and SP-G act as biased agonists at GRP and V1A receptors causing blockade of Gq-mediated Ca2+ release while directing signalling to activate ERK via a pertussis toxin-sensitive pathway. This is the first description of biased agonism at V1A receptors. This unique pharmacology governs the antiproliferative properties of these agents and highlights their potential therapeutic potential for the treatment of SCLC and particularly in tumours, which have developed resistance to chemotherapy

    Cellular Cytoskeleton Dynamics Modulates Non-Viral Gene Delivery through RhoGTPases

    Get PDF
    Although it is well accepted that the constituents of the cellular microenvironment modulate a myriad of cellular processes, including cell morphology, cytoskeletal dynamics and uptake pathways, the underlying mechanism of how these pathways influence non-viral gene transfer have not been studied. Transgene expression is increased on fibronectin (Fn) coated surfaces as a consequence of increased proliferation, cell spreading and active engagement of clathrin endocytosis pathway. RhoGTPases mediate the crosstalk between the cell and Fn, and regulate cellular processes involving filamentous actin, in-response to cellular interaction with Fn. Here the role of RhoGTPases specifically Rho, Rac and Cdc42 in modulation of non-viral gene transfer in mouse mesenchymal stem (mMSCs) plated in a fibronectin microenvironment was studied. More than 90% decrease in transgene expression was observed after inactivation of RhoGTPases using difficile toxin B (TcdB) and C3 transferase. Expression of dominant negative RhoA (RhoAT19N), Rac1(Rac1T17N) and Cdc42 (Cdc42T17N) also significantly reduced polyplex uptake and transgene expression. Interactions of cells with Fn lead to activation of RhoGTPases. However, further activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes (RhoAQ63L, Rac1Q61L and Cdc42Q61L) did not further enhance transgene expression in mMSCs, when plated on Fn. In contrast, activation of RhoA, Rac1 and Cdc42 by expression of constitutively active genes for cells plated on collagen I, which by itself did not increase RhoGTPase activation, resulted in enhanced transgene expression. Our study shows that RhoGTPases regulate internalization and effective intracellular processing of polyplexes that results in efficient gene transfer

    Asporin Expression Is Highly Regulated in Human Chondrocytes

    No full text
    A significant association between a polymorphism in the D repeat of the gene encoding asporin and osteoarthritis, the most frequent of articular diseases, has been recently reported. The goal of the present study was to investigate the expression of this new class I small leucine-rich proteoglycan (SLRP) in human articular chondrocytes. First, we studied the modulation of asporin (ASPN) expression by cytokines by Western blot and reverse transcription–polymerase chain reaction. Interleukin-1β and tumor necrosis factor-α downregulated ASPN, whereas transforming growth factor-β1 (when incubated in a serum-free medium) upregulated it. Similarly to proinflammatory cytokines, chondrocyte dedifferentiation induced by a successive passages of cells was accompanied by a decreased asporin expression, whereas their redifferentiation by three-dimensional culture restored its expression. Finally, we found an important role of the transcription factor Sp1 in the regulation of ASPN expression. Sp1 ectopic expression increased ASPN mRNA level and promoter activity. In addition, using gene reporter assay and electrophoretic mobility shift assay, we showed that Sp1 mediated its effect through a region located between −473 and −140 bp upstream of the transcription start site in ASPN gene. In conclusion, this report is the first study on the regulation of asporin expression by different cytokines in human articular chondrocytes. Our data indicate that the expression of this gene is finely regulated in cartilage and suggest a major role of Sp1

    The functional significance of genetic variation within the β1-adrenoceptor

    No full text
    The β-1 adrenoceptor is an archetypal G-coupled protein receptor that controls sympathetic responses in the heart, kidney and adipocytes. It has been widely exploited as a drug target with the development of antagonists to treat cardiovascular diseases such as hypertension, angina and heart failure. Signalling through the receptor is modulated by desensitization and β1- adrenoceptor down-regulation. It is also affected by in vitro substitution of specific amino acid residues within the β-1 adrenoceptor. Amino acid substitutions also occur naturally due to polymorphic variation within the human β-1 adrenoceptor gene itself. Since these variants are common (typically being present in >5% of the population), the pharmacogenetic implications are enormous. A number of these variants have been identified, although two have been the particular focus of recent publications: a serine to glycine substitution at position 49 (49S > G) and an arginine to glycine at position 389 (389R > G). The data on the in vitro behaviour of these two receptor variants is reviewed here, along with the evidence that they may affect both the risk of cardiovascular disease and the therapeutic response to β-1 adrenoceptor antagonists
    corecore