2,488 research outputs found
A comparative study of the D0 neural-network analysis of the top quark non-leptonic decay channel
A simpler neural-network approach is presented for the analysis of the top
quark non-leptonic decay channel in events of the D0 Collaboration. Results for
the top quark signal are comparable to those found by the D0 Collaboration by a
more elaborate handling of the event information used as input to the neural
network.Comment: 5 pages, 1 figur
Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks
In this paper we propose and investigate a novel nonlinear unit, called
unit, for deep neural networks. The proposed unit receives signals from
several projections of a subset of units in the layer below and computes a
normalized norm. We notice two interesting interpretations of the
unit. First, the proposed unit can be understood as a generalization of a
number of conventional pooling operators such as average, root-mean-square and
max pooling widely used in, for instance, convolutional neural networks (CNN),
HMAX models and neocognitrons. Furthermore, the unit is, to a certain
degree, similar to the recently proposed maxout unit (Goodfellow et al., 2013)
which achieved the state-of-the-art object recognition results on a number of
benchmark datasets. Secondly, we provide a geometrical interpretation of the
activation function based on which we argue that the unit is more
efficient at representing complex, nonlinear separating boundaries. Each
unit defines a superelliptic boundary, with its exact shape defined by the
order . We claim that this makes it possible to model arbitrarily shaped,
curved boundaries more efficiently by combining a few units of different
orders. This insight justifies the need for learning different orders for each
unit in the model. We empirically evaluate the proposed units on a number
of datasets and show that multilayer perceptrons (MLP) consisting of the
units achieve the state-of-the-art results on a number of benchmark datasets.
Furthermore, we evaluate the proposed unit on the recently proposed deep
recurrent neural networks (RNN).Comment: ECML/PKDD 201
Can a connectionist model explain the processing of regularly and irregularly inflected words in German as L1 and L2?
The connectionist model is a prevailing model of the structure and functioning of the cognitive system of the processing of morphology. According to this model, the morphology of regularly and irregularly inflected words (e.g., verb participles and noun plurals) is processed in the same cognitive network. A validation of the connectionist model of the processing of morphology in German as L2 has yet to be achieved. To investigate L2-specific aspects, we compared a group of L1 speakers of German with speakers of German as L2. L2 and L1 speakers of German were assigned to their respective group by their reaction times in picture naming prior to the central task. The reaction times in the lexical decision task of verb participles and noun plurals were largely consistent with the assumption of the connectionist model. Interestingly, speakers of German as L2 showed a specific advantage for irregular compared with regular verb participles
Rhythmic inhibition allows neural networks to search for maximally consistent states
Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits
yet its computational role still remains elusive. We show that a model of
Gamma-band rhythmic inhibition allows networks of coupled cortical circuit
motifs to search for network configurations that best reconcile external inputs
with an internal consistency model encoded in the network connectivity. We show
that Hebbian plasticity allows the networks to learn the consistency model by
example. The search dynamics driven by rhythmic inhibition enable the described
networks to solve difficult constraint satisfaction problems without making
assumptions about the form of stochastic fluctuations in the network. We show
that the search dynamics are well approximated by a stochastic sampling
process. We use the described networks to reproduce perceptual multi-stability
phenomena with switching times that are a good match to experimental data and
show that they provide a general neural framework which can be used to model
other 'perceptual inference' phenomena
Neural NILM: Deep Neural Networks Applied to Energy Disaggregation
Energy disaggregation estimates appliance-by-appliance electricity
consumption from a single meter that measures the whole home's electricity
demand. Recently, deep neural networks have driven remarkable improvements in
classification performance in neighbouring machine learning fields such as
image classification and automatic speech recognition. In this paper, we adapt
three deep neural network architectures to energy disaggregation: 1) a form of
recurrent neural network called `long short-term memory' (LSTM); 2) denoising
autoencoders; and 3) a network which regresses the start time, end time and
average power demand of each appliance activation. We use seven metrics to test
the performance of these algorithms on real aggregate power data from five
appliances. Tests are performed against a house not seen during training and
against houses seen during training. We find that all three neural nets achieve
better F1 scores (averaged over all five appliances) than either combinatorial
optimisation or factorial hidden Markov models and that our neural net
algorithms generalise well to an unseen house.Comment: To appear in ACM BuildSys'15, November 4--5, 2015, Seou
Supervised Learning in Multilayer Spiking Neural Networks
The current article introduces a supervised learning algorithm for multilayer
spiking neural networks. The algorithm presented here overcomes some
limitations of existing learning algorithms as it can be applied to neurons
firing multiple spikes and it can in principle be applied to any linearisable
neuron model. The algorithm is applied successfully to various benchmarks, such
as the XOR problem and the Iris data set, as well as complex classifications
problems. The simulations also show the flexibility of this supervised learning
algorithm which permits different encodings of the spike timing patterns,
including precise spike trains encoding.Comment: 38 pages, 4 figure
Recurrent Latent Variable Networks for Session-Based Recommendation
In this work, we attempt to ameliorate the impact of data sparsity in the
context of session-based recommendation. Specifically, we seek to devise a
machine learning mechanism capable of extracting subtle and complex underlying
temporal dynamics in the observed session data, so as to inform the
recommendation algorithm. To this end, we improve upon systems that utilize
deep learning techniques with recurrently connected units; we do so by adopting
concepts from the field of Bayesian statistics, namely variational inference.
Our proposed approach consists in treating the network recurrent units as
stochastic latent variables with a prior distribution imposed over them. On
this basis, we proceed to infer corresponding posteriors; these can be used for
prediction and recommendation generation, in a way that accounts for the
uncertainty in the available sparse training data. To allow for our approach to
easily scale to large real-world datasets, we perform inference under an
approximate amortized variational inference (AVI) setup, whereby the learned
posteriors are parameterized via (conventional) neural networks. We perform an
extensive experimental evaluation of our approach using challenging benchmark
datasets, and illustrate its superiority over existing state-of-the-art
techniques
Audio Event Detection using Weakly Labeled Data
Acoustic event detection is essential for content analysis and description of
multimedia recordings. The majority of current literature on the topic learns
the detectors through fully-supervised techniques employing strongly labeled
data. However, the labels available for majority of multimedia data are
generally weak and do not provide sufficient detail for such methods to be
employed. In this paper we propose a framework for learning acoustic event
detectors using only weakly labeled data. We first show that audio event
detection using weak labels can be formulated as an Multiple Instance Learning
problem. We then suggest two frameworks for solving multiple-instance learning,
one based on support vector machines, and the other on neural networks. The
proposed methods can help in removing the time consuming and expensive process
of manually annotating data to facilitate fully supervised learning. Moreover,
it can not only detect events in a recording but can also provide temporal
locations of events in the recording. This helps in obtaining a complete
description of the recording and is notable since temporal information was
never known in the first place in weakly labeled data.Comment: ACM Multimedia 201
A Comparison of the Use of Binary Decision Trees and Neural Networks in Top Quark Detection
The use of neural networks for signal vs.~background discrimination in
high-energy physics experiment has been investigated and has compared favorably
with the efficiency of traditional kinematic cuts. Recent work in top quark
identification produced a neural network that, for a given top quark mass,
yielded a higher signal to background ratio in Monte Carlo simulation than a
corresponding set of conventional cuts. In this article we discuss another
pattern-recognition algorithm, the binary decision tree. We have applied a
binary decision tree to top quark identification at the Tevatron and found it
to be comparable in performance to the neural network. Furthermore,
reservations about the "black box" nature of neural network discriminators do
not apply to binary decision trees; a binary decision tree may be reduced to a
set of kinematic cuts subject to conventional error analysis.Comment: 14pp. Plain TeX + mtexsis.tex (latter available through 'get
mtexsis.tex'.) Two postscript files avail. by emai
- …