Acoustic event detection is essential for content analysis and description of
multimedia recordings. The majority of current literature on the topic learns
the detectors through fully-supervised techniques employing strongly labeled
data. However, the labels available for majority of multimedia data are
generally weak and do not provide sufficient detail for such methods to be
employed. In this paper we propose a framework for learning acoustic event
detectors using only weakly labeled data. We first show that audio event
detection using weak labels can be formulated as an Multiple Instance Learning
problem. We then suggest two frameworks for solving multiple-instance learning,
one based on support vector machines, and the other on neural networks. The
proposed methods can help in removing the time consuming and expensive process
of manually annotating data to facilitate fully supervised learning. Moreover,
it can not only detect events in a recording but can also provide temporal
locations of events in the recording. This helps in obtaining a complete
description of the recording and is notable since temporal information was
never known in the first place in weakly labeled data.Comment: ACM Multimedia 201