58 research outputs found

    Relationship of goat milk flow emission variables with milking routine, milking parameters, milking machine characteristics and goat physiology

    Get PDF
    The aim of this paper was to study the relationship between milk flow emission variables recorded during milking of dairy goats with variables related to milking routine, goat physiology, milking parameters and milking machine characteristics, to determine the variables affecting milking performance and help the goat industry pinpoint farm and milking practices that improve milking performance. In total, 19 farms were visited once during the evening milking. Milking parameters (vacuum level (VL), pulsation ratio and pulsation rate, vacuum drop), milk emission flow variables (milking time, milk yield, maximum milk flow (MMF), average milk flow (AVMF), time until 500 g/min milk flow is established (TS500)), doe characteristics of 8 to 10 goats/farm (breed, days in milk and parity), milking practices (overmilking, overstripping, pre-lag time) and milking machine characteristics (line height, presence of claw) were recorded on every farm. The relationships between recorded variables and farm were analysed by a one-way ANOVA analysis. The relationships of milk yield, MMF, milking time and TS500 with goat physiology, milking routine, milking parameters and milking machine design were analysed using a linear mixed model, considering the farm as the random effect. Farm was significant (P<0.05) in all the studied variables. Milk emission flow variables were similar to those recommended in scientific studies. Milking parameters were adequate in most of the farms, being similar to those recommended in scientific studies. Few milking parameters and milking machine characteristics affected the tested variables: average vacuum level only showed tendency on MMF, and milk pipeline height on TS500. Milk yield (MY) was mainly affected by parity, as the interaction of days in milk with parity was also significant. Milking time was mainly affected by milk yield and breed. Also significant were parity, the interaction of days in milk with parity and overstripping, whereas overmilking showed a slight tendency. We concluded that most of the studied variables were mainly related to goat physiology characteristics, as the effects of milking parameters and milking machine characteristics were scarce

    The effect of storage temperature and duration on the microbial quality of bulk tank milk

    Get PDF
    peer-reviewedThe dairy industry in Ireland is currently undergoing a period of expansion and, as a result, it is anticipated that milk may be stored in bulk tanks on-farm for periods greater than 48 h. The objective of this study was to investigate the effects of storage temperature and duration on microbial quality of bulk tank milk when fresh milk is added to the bulk tank twice daily. Bulk tank milk stored at 3 temperatures was sampled at 24-h intervals during storage periods of 0 to 96 h. Bulk tank milk samples were analyzed for total bacterial count (TBC), psychrotrophic bacterial count (PBC), laboratory pasteurization count (LPC), psychrotrophic-thermoduric bacterial count (PBC-LPC), proteolytic bacterial count, lipolytic bacterial count, presumptive Bacillus cereus, sulfite-reducing Clostridia (SRC), and SCC. The bulk tank milk temperature was set at each of 3 temperatures (2°C, 4°C, and 6°C) in each of 3 tanks on 2 occasions during two 6-wk periods. Period 1 was undertaken in August and September, when all cows were in mid lactation, and period 2 was undertaken in October and November, when all cows were in late lactation. None of the bulk tank bacterial counts except the proteolytic count were affected by lactation period. The proteolytic bacterial count was greater in period 2 than in period 1. The TBC and PBC of milk stored at 6°C increased as storage duration increased. The TBC did not increase with increasing storage duration when milk was stored at 2°C or 4°C but the PBC of milk stored at 4°C increased significantly between 0 and 96 h. The numbers of proteolytic and lipolytic bacteria, LPC, or PBC-LPC in bulk tank milk were not affected by temperature or duration of storage. Presumptive B. cereus were detected in 10% of all bulk tank milk samples taken over the two 6-wk periods, with similar proportions observed in both. In bulk tank milk samples, a greater incidence of SRC was observed in period 2 (20%) compared with period 1 (3%). Milk produced on-farm with minimal bacterial contamination can be successfully stored at 2°C and 4°C for up to 96h with little effect on its microbial quality

    The effect of storage conditions on the composition and functional properties of blended bulk tank milk

    Get PDF
    peer-reviewedThe objective of this study was to investigate the effects of storage temperature and duration on the composition and functional properties of bulk tank milk when fresh milk was added to the bulk tank twice daily. The bulk tank milk temperature was set at each of 3 temperatures (2, 4, and 6°C) in each of 3 tanks on 2 occasions during two 6-wk periods. Period 1 was undertaken in August and September when all cows were in mid lactation, and period 2 was undertaken in October and November when all cows were in late lactation. Bulk tank milk stored at the 3 temperatures was sampled at 24-h intervals during storage periods of 0 to 96 h. Compositional parameters were measured for all bulk tank milk samples, including gross composition and quantification of nitrogen compounds, casein fractions, free amino acids, and Ca and P contents. The somatic cell count, heat stability, titratable acidity, and rennetability of bulk tank milk samples were also assessed. Almost all parameters differed between mid and late lactation; however, the interaction between lactation, storage temperature, and storage duration was significant for only 3 parameters: protein content and concentrations of free cysteic acid and free glutamic acid. The interaction between storage temperature and storage time was not significant for any parameter measured, and temperature had no effect on any parameter except lysine: lysine content was higher at 6°C than at 2°C. During 96 h of storage, the concentrations of some free amino acids (glutamic acid, lysine, and arginine) increased, which may indicate proteolytic activity during storage. Between 0 and 96 h, minimal deterioration was observed in functional properties (rennet coagulation time, curd firmness, and heat stability), which was most likely due to the dissociation of β-casein from the casein micelle, which can be reversed upon pasteurization. Thus, this study suggests that blended milk can be stored for up to 96 h at temperatures between 2°C and 6°C with little effect on its composition or functional properties

    Understanding and using somatic cell counts to improve milk quality

    Get PDF
    peer-reviewedThe production of high quality milk is a requirement to sustain a profitable dairy industry and somatic cell count (SCC) values are routinely used to identify subclinical mastitis and define quality standards. The objective of this paper is to review the use of SCC as a diagnostic tool for subclinical mastitis in order to improve milk quality on dairy farms. Mastitis is detected based on inflammation subsequent to intramammary infection (IMI) by pathogenic organisms. Individual cow SCC values are used to detect the inflammation that results from IMI and are necessary to define the prevalence and incidence of subclinical IMI. A threshold of <200,000 cells/mL is considered to be of the most practical value used to define a mammary quarter as healthy. The development of IMI is the most significant factor that influences milk SCC and assessment of monthly values to determine newly and chronically increased SCC can be highly diagnostic for resolving problems with increased bulk tank SCC. Methods to reduce the development of new IMI are well known and adoption of best management practices for milking and herd management have consistently been shown to result in reductions in bulk tank SCC. Implementation of mastitis control programmes can be improved by focusing on three practical recommendations: 1) Farmers should work with their advisors to develop an annual udder health plan that includes clear goals for milk quality. 2) The annual udder health plan should emphasise prevention of new IMI. 3) Farmers must identify and manage chronically infected cows. Proactive management of IMI can be extremely effective in helping farmers produce milk that meets industry standards for milk quality

    Farm management factors associated with the Bacillus cereus count in bulk tank milk

    Get PDF
    peer-reviewedThe objective of this study was to determine the on-farm management factors that are associated with the Bacillus cereus count in raw bulk tank milk using a cross sectional study design. Bulk tank milk quality was monitored for B. cereus on 63 dairy farms between July and August 2012. Bulk tank milk samples corresponding with processor milk collection dates were taken over a two week period prior to the farm visit and tested for B. cereus. The four most recent samples taken prior to the on-farm visit were averaged and log transformed to give the outcome variable; mean log10 B. cereus cfu/mL. On-farm data collection included recording observations and providing a questionnaire on basic hygiene, management factors and cow hygiene scoring. All independent variables were analysed individually with the outcome variable using simple linear regression and one-way ANOVA; a multivariable regression model was subsequently developed. Only significant variables were retained in the final model (P < 0.05). The geometric mean B. cereus count for all milk samples was 40 cfu/mL. The start temperature of the cleaning solution wash, dry wiping teats prior to unit application, the feeding of silage and reusing the cleaning solution more than once were all unconditionally associated (P < 0.10) with the B. cereus count in bulk tank milk but did not enter the final multivariable model. B. cereus count was four times greater (201 cfu/mL) when cows had been housed compared to when they were on pasture (50 cfu/mL). The allocation of fresh grass every 12 h (62 cfu/mL) resulted in a decrease in B. cereus count (166cfu/mL every 24 h or greater). The testing of water for bacteriology was associated with an increase in B. cereus count. In conclusion, this study highlights specific management factors associated with the B. cereus count in bulk tank milk
    corecore