11 research outputs found

    Evaluation of the use of chemometric methods in soil analysis

    Get PDF
    One of the major interests in soil analysis is the evaluation of its chemical, physical and biological parameters, which are indicators of soil quality (the most important is the organic matter). Besides there is a great interest in the study of humic substances and on the assessment of pollutants, such as pesticides and heavy metals, in soils. Chemometrics is a powerful tool to deal with these problems and can help soil researchers to extract much more information from their data. In spite of this, the presence of these kinds of strategies in the literature has obtained projection only recently. The utilization of chemometric methods in soil analysis is evaluated in this article. The applications will be divided in four parts (with emphasis in the first two): (i) descriptive and exploratory methods based on Principal Component Analysis (PCA); (ii) multivariate calibration methods (MLR, PCR and PLS); (iii) methods such as Evolving Factor Analysis and SIMPLISMA; and (iv) artificial intelligence methods, such as Artificial Neural Networks.23454755

    Análise integrada de sistemas de produção de tomateiro com base em indicadores edafobiológicos.

    Get PDF
    A análise integrada de indicadores edafobiológicos ligados ao manejo do solo constitui uma ferramenta importante para estimar níveis de sustentabilidade do agroecossistema, detectando-se pontos críticos para a devida correção de manejo. Essa ferramenta foi empregada na avaliação de sistemas de produção orgânica e convencional de tomate, em cultivo protegido e a campo aberto, no estado de São Paulo. Tomaram-se como referência solos de mata nativa e/ou pastagem natural, dependendo do local de estudo. Em Serra Negra, o solo sob sistema orgânico apresentou maior capacidade de campo e teor de argila dispersa mais baixo, indicativos da estabilidade dos agregados. No sistema convencional observou-se uma elevada condutividade elétrica, evidenciando a alta disponibilidade de sais solúveis. A análise de componentes principais (ACP) permitiu concluir que há maior grau de similaridade entre o solo sob sistema orgânico e aqueles das bases referenciais, com respeito aos indicadores químicos e biológicos. Constatou-se que C org, N total, polissacarídeos, FDA (hidrólise de diacetato de fluoresceína) e atividade enzimática de desidrogenase estão positivamente relacionados com o sistema orgânico, a mata nativa e a pastagem. Em contrapartida, a saturação por bases (V%), pH, teores de Mn, Mg e Ca, bem como a razão de dispersão estão inversamente relacionadas ao manejo orgânico. Já em Araraquara, os resultados da ACP distinguiram as áreas organicamente cultivadas das matas nativas, principalmente, com base nos indicadores biológicos

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease

    Get PDF
    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness

    Isolation of ursolic acid from apple peels by high speed counter-current chromatography

    No full text
    Cuticular waxes of four varieties of Malus domestica were investigated regarding their content of ursolic acid. Peels from Fuji, Gala, Smith and Granny Smith apples were extracted with chloroform, ethyl acetate and/or ethanol. The crude extracts were purified by high speed counter-current chromatography (HSCCC), by using mobile and stationary phases derived from the two-phase solvent system composed by n-hexane:ethyl acetate: methanol: water in the proportion of 10: 5:2.5:1. The phase proportions and the relative distribution of ursolic acid between the two-phases were optimized by TLC and optical densitometry, by comparison with an authentic sample of ursolic acid. The amount of ursolic acid present in the extracts as well as the characterization of the isolated compound were made by high resolution gas chromatography coupled to mass spectrometry (GC-MS), C-13 nuclear magnetic resonance (C-13 NMR), Infrared; and by comparing thin layer chromatography and flame ionization detection gas chromatography (GC-FID) patterns with the commercial sample. The average content of ursolic acid of 0.8 mg/cm(2) in the peel (around 50 mg per medium sized fruit with a surface area of 5070 cm(2)) was found in the Fuji and Smith varieties, whereas 0.5 mg/cm(2) and 0.2 mg/cm(2) were the amounts calculated for Granny Smith and Gala, respectively. The HSCCC technique was shown to be a good method to purify free ursolic acid from apple peels and could represent a new technological tool to be developed to exploit industrially this source of product. (c) 2007 Elsevier Ltd. All rights reserved.106276777

    Discrimination of management effects on soil parameters by using principal component analysis: a multivariate analysis case study

    No full text
    One of the major interests in soil analysis is the integrated evaluation of soil properties, which might be indicators of soil quality. Unsupervised methods of multivariate statistics are powerful tools for this integrated assessment and can help soil researchers to extract much more information from their data. A multivariate study was carried out in three farms from Guaira, State of Sao Paulo, Brazil. Conventionally managed plots that intensively utilized pesticides and chemical fertilizers were compared with both non-disturbed forest areas and alternatively managed plots. The latter were under ecological farming employing effective microorganisms (EM) integrated with crop residues. Eight soil parameters were determined for each plot. Hierarchical cluster analysis (HCA) was used to verify the similarity among the plots. The multivariate approach of principal component analysis (PCA) allowed us to distinguish the areas as a function of the soil management and determine which are the most important parameters to characterize them. The forest areas presented higher microbial biomass with lower cellulolytics population than at cultivated sites. The alternative plots were characterized by higher microbial biomass and polysaccharide content with lower phosphate solubilizers and cellulolytics microorganisms colony counts than at the conventional areas. The higher observed levels of microbial biomass and polysaccharide content in the alternative areas can be attributed to the effects of the alternative soil amendment. All these effects can be clearer globally visualized with the aid of PCA, through the biplots. (C) 2002 Elsevier Science B.V. All rights reserved.67217118

    Strategic grazing management towards sustainable intensification at tropical pasture-based dairy systems

    No full text
    Agricultural systems are responsible for environmental impacts that can be mitigated through the adoption of more sustainable principles. Our objective was to investigate the influence of two pre-grazing targets (95% and maximum canopy light interception during pasture regrowth; LI95% and LIMax, respectively) on sward structure and herbage nutritive value of elephant grass cv. Cameroon, and dry matter intake (DMI), milk yield, stocking rate, enteric methane (CH₄) emissions by Holstein × Jersey dairy cows. We hypothesized that grazing strategies modifying the sward structure of elephant grass (Pennisetum purpureum Schum.) improves nutritive value of herbage, increasing DMI and reducing intensity of enteric CH₄ emissions, providing environmental and productivity benefits to tropical pasture-based dairy systems. Results indicated that pre-sward surface height was greater for LIMax (≈135 cm) than LI95% (≈100 cm) and can be used as a reliable field guide for monitoring sward structure. Grazing management based on LI95% criteria improved herbage nutritive value and grazing efficiency, allowing greater DMI, milk yield and stocking rate by dairy cows. Daily enteric CH₄ emission was not affected; however, cows grazing elephant grass at LI95% were more efficient and emitted 21% less CH₄/kg of milk yield and 18% less CH₄/kg of DMI. The 51% increase in milk yield per hectare overcame the 29% increase in enteric CH₄ emissions per hectare in LI95% grazing management. Thereby the same resource allocation resulted in a 16% mitigation of the main greenhouse gas from pasture-based dairy systems. Overall, strategic grazing management is an environmental friendly practice that improves use efficiency of allocated resources through optimization of processes evolving plant, ruminant and their interface, and enhances milk production efficiency of tropical pasture-based systems
    corecore