69 research outputs found

    Mapping opportunities and challenges for rewilding in Europe

    Get PDF
    Farmland abandonment takes place across the world due to socio-economic and ecological drivers. In Europe agricultural and environmental policies aim to prevent abandonment and halt ecological succession. Ecological rewilding has been recently proposed as an alternative strategy. We developed a framework to assess opportunities for rewilding across different dimensions of wilderness in Europe. We mapped artificial light, human accessibility based on transport infrastructure, proportion of harvested primary productivity (i.e., ecosystem productivity appropriated by humans through agriculture or forestry), and deviation from potential natural vegetation in areas projected to be abandoned by 2040. At the continental level, the levels of artificial light were low and the deviation from potential natural vegetation was high in areas of abandonment. The relative importance of wilderness metrics differed regionally and was strongly connected to local environmental and socio-economic contexts. Large areas of projected abandonment were often located in or around Natura 2000 sites. Based on these results, we argue that management should be tailored to restore the aspects of wilderness that are lacking in each region. There are many remaining challenges regarding biodiversity in Europe, but megafauna species are already recovering. To further potentiate large-scale rewilding, Natura 2000 management would need to incorporate rewilding approaches. Our framework can be applied to assessing rewilding opportunities and challenges in other world regions, and our results could guide redirection of subsidies to manage social-ecological systems

    Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

    Get PDF
    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs

    The Staphylococcus aureus RNome and Its Commitment to Virulence

    Get PDF
    Staphylococcus aureus is a major human pathogen causing a wide spectrum of nosocomial and community-associated infections with high morbidity and mortality. S. aureus generates a large number of virulence factors whose timing and expression levels are precisely tuned by regulatory proteins and RNAs. The aptitude of bacteria to use RNAs to rapidly modify gene expression, including virulence factors in response to stress or environmental changes, and to survive in a host is an evolving concept. Here, we focus on the recently inventoried S. aureus regulatory RNAs, with emphasis on those with identified functions, two of which are directly involved in pathogenicity

    Assessing the Relationship Between Nitrate-Reducing Capacity of the Oral Microbiome and Systemic Outcomes

    No full text
    10.1007/978-1-0716-1518-8_9Methods in Molecular Biology2327139-16

    Nitrite Generating and Depleting Capacity of the Oral Microbiome and Cardiometabolic Risk: Results from ORIGINS

    No full text
    10.1161/JAHA.121.023038Journal of the American Heart Association1110e023038
    corecore