488 research outputs found

    Remote sensing of spectral signatures of tropospheric aerosols

    Get PDF
    With the launch of the German Aerospace Agency's (DLR) Modular Opto-electronic Scanner (MOS) sensor on board the Indian Remote Sensing satellite (IRS-P3) launched by the Indian Space Research Organization (ISRO) in March 1996, 13 channel multi-spectral data in the range of 408 to 1010nm at high radiometric resolution, precision, and with narrow spectral bands have been available for a variety of land, atmospheric and oceanic studies. We found that these data are best for validation of radiative transfer model and the corresponding code developed by one of the authors at Space Applications Centre, and called ATMRAD (abbreviated for ATMospheric RADiation). Once this model/code is validated, it can be used for retrieving information on tropospheric aerosols over ocean or land. This paper deals with two clear objectives, viz., (1) Validation of ATMRAD model/code using MOS data and synchronously measured atmospheric data, and if found performing well, then to (2) derive relationship between MOS radiances and Aerosol Optical Thickness (AOT). The data validation procedure essentially involves near-synchronous measurements of columnar aerosol optical thickness and altitude profiles of aerosol concentration using ground-based multi-filter solar radiometers and Argon-ion Lidar, respectively and computation of the top-of-the-atmosphere (TOA) radiances from a low reflecting target (near clear water reservoir in the present study) using the ATMRAD model. The results show that the model performance is satisfactory and a relationship between the spectral parameters of MOS radiances and aerosol optical thickness can be established. In this communication, we present the details of the experiments conducted, database, validation of the ATMRAD model and development of the relationship between AOT and MOS radiance

    Integrating psychosocial and WASH school interventions to build disaster resilience

    Get PDF
    This paper reviews the key disaster risk management (DRM) frameworks used for protecting children's wellbeing in disaster settings and identifies a lack of consideration for (1) psychosocial and (2) water, sanitation and hygiene (WASH) needs. It also demonstrates that these two domains are meaningfully linked, as access to adequate WASH provision may protect psychosocial wellbeing and promote community resilience. As support in both domains is vitally important to children's wellbeing, these gaps warrant immediate attention. Schools are uniquely situated to support these needs as part of disaster risk management and resilience building. Therefore, we consider the ASEAN Common Framework for Comprehensive School Safety (ACFCSS), which is an adaptation of the Comprehensive School Safety Framework (CSS) implemented in schools across the ASEAN region. While the CSS explicitly considers WASH, it only briefly considers psychosocial support; the ACFCCS lacks consideration of both domains. We argue revisions of the ACFCSS should prioritise the inclusion of psychosocial and WASH support and consider the role of schools beyond their capacity as educational institutions. We present an adaptation of ACFCSS with an additional framework pillar to guide this revision. Overall, we advocate for an integrated approach to DRM in schools based on an evidence-based, interdisciplinary perspective. We provide a series of evidence-based recommendations for DRM frameworks to consider, especially for those that intend to safeguard the wellbeing of children

    Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase

    Get PDF
    Background: Deoxynucleoside triphosphates (dNTPs) are the normal substrates for DNA sysnthesis is catalyzed by polymerases such as HIV-1 reverse transcriptase (RT). However, substantial amounts of deoxynucleoside diphosphates (dNDPs) are also present in the cell. Use of dNDPs in HIV-1 DNA sysnthesis could have significant implications for the efficacy of nucleoside RT inhibitors such as AZT which are first line therapeutics fro treatment of HIV infection. Our earlier work on HIV-1 reverse transcriptase (RT) suggested that the interaction between the γ phosphate of the incoming dNTP and RT residue K65 in the active site is not essential for dNTP insertion, implying that this polymerase may be able to insert dNPs in addition to dNTPs. Methodology/Principal Findings: We examined the ability of recombinant wild type (wt) and mutant RTs with substitutions at residue K65 to utilize a dNDP substrate in primer extension reactions. We found that wild type HIV-1 RT indeed catalyzes incorporation of dNDP substrates whereas RT with mutations of residue K645 were unable to catalyze this reaction. Wild type HIV-1 RT also catalyzed the reverse reaction, inorganic phosphate-dependent phosphorolysis. Nucleotide-mediated phosphorolytic removal of chain-terminating 3′-terminal nucleoside inhibitors such as AZT forms the basis of HIV-1 resistance to such drugs, and this removal is enhanced by thymidine analog mutations (TAMs). We found that both wt and TAM-containing RTs were able to catalyze Pi-mediated phosphorolysis of 3′-terminal AZT at physiological levels of Pi with an efficacy similar to that for ATP-dependent AZT-excision. Conclusion: We have identified two new catalytic function of HIV-1 RT, the use of dNDPs as substrates for DNA synthesis, and the use of Pi as substrate for phosphorolytic removal of primer 3′-terminal nucleotides. The ability to insert dNDPs has been documented for only one other DNA polymerase The RB69 DNA polymerase and the reverse reaction employing inorganic phosphate has not been documented for any DNA polymerase. Importantly, our results show that Pi-mediated phosphorolysis can contribute to AZT resistance and indicates that factors that influence HIV resistance to AZT are more complex than previously appreciated. © 2008 Garforth et al

    Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation

    Get PDF
    Background Social amoebae are lower eukaryotes that inhabit the soil. They are characterized by the construction of a starvation-induced multicellular fruiting body with a spore ball and supportive stalk. In most species, the stalk is filled with motile stalk cells, as represented by the model organism Dictyostelium discoideum, whose developmental mechanisms have been well characterized. However, in the genus Acytostelium, the stalk is acellular and all aggregated cells become spores. Phylogenetic analyses have shown that it is not an ancestral genus but has lost the ability to undergo cell differentiation. Results We performed genome and transcriptome analyses of Acytostelium subglobosum and compared our findings to other available dictyostelid genome data. Although A. subglobosum adopts a qualitatively different developmental program from other dictyostelids, its gene repertoire was largely conserved. Yet, families of polyketide synthase and extracellular matrix proteins have not expanded and a serine protease and ABC transporter B family gene, tagA, and a few other developmental genes are missing in the A. subglobosum lineage. Temporal gene expression patterns are astonishingly dissimilar from those of D. discoideum, and only a limited fraction of the ortholog pairs shared the same expression patterns, so that some signaling cascades for development seem to be disabled in A. subglobosum. Conclusions The absence of the ability to undergo cell differentiation in Acytostelium is accompanied by a small change in coding potential and extensive alterations in gene expression patterns

    Performance of swabs, lavage, and diluents to quantify biomarkers of female genital tract soluble mucosal mediators

    Get PDF
    Background: Measurement of immune mediators and antimicrobial activity in female genital tract secretions may provide biomarkers predictive of risk for HIV-1 acquisition and surrogate markers of microbicide safety. However, optimal methods for sample collection do not exist. This study compared collection methods. Methods: Secretions were collected from 48 women (24 with bacterial vaginosis [BV]) using vaginal and endocervical Dacron and flocked swabs. Cervicovaginal lavage (CVL) was collected with 10 mL of Normosol-R (n = 20), saline (n = 14), or water (n = 14). The concentration of gluconate in Normosol-R CVL was determined to estimate the dilution factor. Cytokine and antimicrobial mediators were measured by Luminex or ELISA and corrected for protein content. Endogenous anti-HIV-1 and anti-E. coli activity were measured by TZM-bl assay or E. coli growth. Results: Higher concentrations of protein were recovered by CVL, despite a 10-fold dilution of secretions, as compared to swab eluents. After protein correction, endocervical swabs recovered the highest mediator levels regardless of BV status. Endocervical and vaginal flocked swabs recovered significantly higher levels of anti-HIV-1 and anti-E. coli activity than Dacron swabs (P<0.001). BV had a significant effect on CVL mediator recovery. Normosol-R tended to recover higher levels of most mediators among women with BV, whereas saline or water tended to recover higher levels among women without BV. Saline recovered the highest levels of anti-HIV-1 activity regardless of BV status. Conclusions: Endocervical swabs and CVL collected with saline provide the best recovery of most mediators and would be the optimal sampling method(s) for clinical trials. © 2011 Dezzutti et al

    Languages ordered by the subword order

    Full text link
    We consider a language together with the subword relation, the cover relation, and regular predicates. For such structures, we consider the extension of first-order logic by threshold- and modulo-counting quantifiers. Depending on the language, the used predicates, and the fragment of the logic, we determine four new combinations that yield decidable theories. These results extend earlier ones where only the language of all words without the cover relation and fragments of first-order logic were considered

    The wonders of flap endonucleases: structure, function, mechanism and regulation.

    Get PDF
    Processing of Okazaki fragments to complete lagging strand DNA synthesis requires coordination among several proteins. RNA primers and DNA synthesised by DNA polymerase α are displaced by DNA polymerase δ to create bifurcated nucleic acid structures known as 5'-flaps. These 5'-flaps are removed by Flap Endonuclease 1 (FEN), a structure-specific nuclease whose divalent metal ion-dependent phosphodiesterase activity cleaves 5'-flaps with exquisite specificity. FENs are paradigms for the 5' nuclease superfamily, whose members perform a wide variety of roles in nucleic acid metabolism using a similar nuclease core domain that displays common biochemical properties and structural features. A detailed review of FEN structure is undertaken to show how DNA substrate recognition occurs and how FEN achieves cleavage at a single phosphate diester. A proposed double nucleotide unpairing trap (DoNUT) is discussed with regards to FEN and has relevance to the wider 5' nuclease superfamily. The homotrimeric proliferating cell nuclear antigen protein (PCNA) coordinates the actions of DNA polymerase, FEN and DNA ligase by facilitating the hand-off intermediates between each protein during Okazaki fragment maturation to maximise through-put and minimise consequences of intermediates being released into the wider cellular environment. FEN has numerous partner proteins that modulate and control its action during DNA replication and is also controlled by several post-translational modification events, all acting in concert to maintain precise and appropriate cleavage of Okazaki fragment intermediates during DNA replication

    Evolving uses of oral reverse transcriptase inhibitors in the HIV-1 epidemic: From treatment to prevention

    Get PDF
    The HIV epidemic continues unabated, with no highly effective vaccine and no cure. Each new infection has significant economic, social and human costs and prevention efforts are now as great a priority as global antiretroviral therapy (ART) scale up. Reverse transcriptase inhibitors, the first licensed class of ART, have been at the forefront of treatment and prevention of mother to child transmission over the past two decades. Now, their use in adult prevention is being

    The multicellularity genes of dictyostelid social amoebas

    Get PDF
    The evolution of multicellularity enabled specialization of cells, but required novel signalling mechanisms for regulating cell differentiation. Early multicellular organisms are mostly extinct and the origins of these mechanisms are unknown. Here using comparative genome and transcriptome analysis across eight uni- and multicellular amoebozoan genomes, we find that 80% of proteins essential for the development of multicellular Dictyostelia are already present in their unicellular relatives. This set is enriched in cytosolic and nuclear proteins, and protein kinases. The remaining 20%, unique to Dictyostelia, mostly consists of extracellularly exposed and secreted proteins, with roles in sensing and recognition, while several genes for synthesis of signals that induce cell-type specialization were acquired by lateral gene transfer. Across Dictyostelia, changes in gene expression correspond more strongly with phenotypic innovation than changes in protein functional domains. We conclude that the transition to multicellularity required novel signals and sensors rather than novel signal processing mechanisms
    corecore