28 research outputs found

    A Prospective Three-Year Cohort Study of the Epidemiology and Virology of Acute Respiratory Infections of Children in Rural India

    Get PDF
    Acute respiratory infection (ARI) is a major killer of children in developing countries. Although the frequency of ARI is similar in both developed and developing countries, mortality due to ARI is 10-50 times higher in developing countries. Viruses are common causes of ARI among such children, yet the disease burden of these infections in rural communities is unknown.A prospective longitudinal study was carried out in children enrolled from two rural Indian villages at birth and followed weekly for the development of ARI, classified as upper respiratory infection, acute lower respiratory infection (ALRI), or severe ALRI. Respiratory syncytial virus (RSV), influenza, parainfluenza viruses and adenoviruses in nasopharyngeal aspirates were detected by direct fluorescent antibody testing (DFA) and, in addition, centrifugation enhanced culture for RSV was done. 281 infants enrolled in 39 months and followed until 42 months. During 440 child years of follow-up there were 1307 ARIs, including 236 ALRIs and 19 severe ALRIs. Virus specific incidence rates per 1000 child years for RSV were total ARI 234, ALRI 39, and severe ALRI 9; for influenza A total ARI 141, ALRI 39; for INF B total ARI 37; for PIV1 total ARI 23, for PIV2 total ARI 28, ALRI 5; for parainfluenza virus 3 total ARI 229, ALRI 48, and severe ALRI 5 and for adenovirus total ARI 18, ALRI 5. Repeat infections with RSV were seen in 18 children.RSV, influenza A and parainfluenza virus 3 were important causes of ARI among children in rural communities in India. These data will be useful for vaccine design, development and implementation purposes

    A review of data needed to parameterize a dynamic model of measles in developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dynamic models of infection transmission can project future disease burden within a population. Few dynamic measles models have been developed for low-income countries, where measles disease burden is highest. Our objective was to review the literature on measles epidemiology in low-income countries, with a particular focus on data that are needed to parameterize dynamic models.</p> <p>Methods</p> <p>We included age-stratified case reporting and seroprevalence studies with fair to good sample sizes for mostly urban African and Indian populations. We emphasized studies conducted before widespread immunization. We summarized age-stratified attack rates and seroprevalence profiles across these populations. Using the study data, we fitted a "representative" seroprevalence profile for African and Indian settings. We also used a catalytic model to estimate the age-dependent force of infection for individual African and Indian studies where seroprevalence was surveyed. We used these data to quantify the effects of population density on the basic reproductive number <it>R</it><sub>0</sub>.</p> <p>Results</p> <p>The peak attack rate usually occurred at age 1 year in Africa, and 1 to 2 years in India, which is earlier than in developed countries before mass vaccination. Approximately 60% of children were seropositive for measles antibody by age 2 in Africa and India, according to the representative seroprevalence profiles. A statistically significant decline in the force of infection with age was found in 4 of 6 Indian seroprevalence studies, but not in 2 African studies. This implies that the classic threshold result describing the critical proportion immune (<it>p</it><sub>c</sub>) required to eradicate an infectious disease, <it>p</it><sub>c </sub>= 1-1/<it>R</it><sub>0</sub>, may overestimate the required proportion immune to eradicate measles in some developing country populations. A possible, though not statistically significant, positive relation between population density and <it>R</it><sub>0 </sub>for various Indian and African populations was also found. These populations also showed a similar pattern of waning of maternal antibodies. Attack rates in rural Indian populations show little dependence on vaccine coverage or population density compared to urban Indian populations. Estimated <it>R</it><sub>0 </sub>values varied widely across populations which has further implications for measles elimination.</p> <p>Conclusions</p> <p>It is possible to develop a broadly informative dynamic model of measles transmission in low-income country settings based on existing literature, though it may be difficult to develop a model that is closely tailored to any given country. Greater efforts to collect data specific to low-income countries would aid in control efforts by allowing highly population-specific models to be developed.</p

    RNA viruses in community-acquired childhood pneumonia in semi-urban Nepal; a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pneumonia is among the main causes of illness and death in children <5 years of age. There is a need to better describe the epidemiology of viral community-acquired pneumonia (CAP) in developing countries.</p> <p>Methods</p> <p>From July 2004 to June 2007, we examined nasopharyngeal aspirates (NPA) from 2,230 cases of pneumonia (World Health Organization criteria) in children 2 to 35 months old recruited in a randomized trial of zinc supplementation at a field clinic in Bhaktapur, Nepal. The specimens were examined for respiratory syncytial virus (RSV), influenza virus type A (InfA) and B (InfB), parainfluenza virus types 1, 2 and 3 (PIV1, PIV2, and PIV3), and human metapneumovirus (hMPV) using a multiplex reverse transcriptase polymerase chain reaction (PCR) assay.</p> <p>Results</p> <p>We identified 919 virus isolates in 887 (40.0%) of the 2,219 NPA specimens with a valid PCR result, of which 334 (15.1%) yielded RSV, 164 (7.4%) InfA, 129 (5.8%) PIV3, 98 (4.4%) PIV1, 93 (4.2%) hMPV, 84 (3.8%) InfB, and 17 (0.8%) PIV2. CAP occurred in an epidemic pattern with substantial temporal variation during the three years of study. The largest peaks of pneumonia occurrence coincided with peaks of RSV infection, which occurred in epidemics during the rainy season and in winter. The monthly number of RSV infections was positively correlated with relative humidity (<it>r</it><sub><it>s </it></sub>= 0.40, <it>P </it>= 0.01), but not with temperature or rainfall. An hMPV epidemic occurred during one of the three winter seasons and the monthly number of hMPV cases was also associated with relative humidity (<it>r</it><sub><it>s </it></sub>= 0.55, <it>P </it>= 0.0005).</p> <p>Conclusion</p> <p>Respiratory RNA viruses were detected from NPA in 40% of CAP cases in our study. The most commonly isolated viruses were RSV, InfA, and PIV3. RSV infections contributed substantially to the observed CAP epidemics. The occurrence of viral CAP in this community seemed to reflect more or less overlapping micro-epidemics with several respiratory viruses, highlighting the challenges of developing and implementing effective public health control measures.</p
    corecore