112 research outputs found

    Odorant Receptor from the Southern House Mosquito Narrowly Tuned to the Oviposition Attractant Skatole

    Get PDF
    Oviposition attractants are environmental cues that allow Culex gravid female mosquitoes to locate suitable sites for egg-laying and, therefore, may be exploited for environmentally friendly strategies for controlling mosquito populations. Naturally occurring skatole has been identified as an oviposition attractant for the Southern House mosquito, Culex quinquefasciatus. Previously, we identified in Cx. quinquefasciatus female antennae an olfactory receptor neuron (ORN) highly sensitive to skatole and an odorant-binding protein involved in the detection of this semiochemical. Here, we describe the characterization of an odorant receptor (OR), CquiOR10, which is narrowly tuned to skatole when expressed in the Xenopus oocyte system. Odorant-induced response profiles generated by heterologously expressed CquiOR10 suggest that this OR is expressed in the mosquito ORN sensitive to skatole. However, geranylacetone, which stimulates the antennal ORN, was not detected by CquiOR10-expressing oocytes, thus raising interesting questions about reception of oviposition attractants in mosquitoes

    The impact of low erythrocyte density in human blood on the fitness and energetic reserves of the African malaria vector Anopheles gambiae

    Get PDF
    Background Anaemia is a common health problem in the developing world. This condition is characterized by a reduction in erythrocyte density, primarily from malnutrition and/or infectious diseases such as malaria. As red blood cells are the primary source of protein for haematophagous mosquitoes, any reduction could impede the ability of mosquito vectors to transmit malaria by influencing their fitness or that of the parasites they transmit. The aim of this study was to determine the impact of differences in the density of red blood cells in human blood on malaria vector (Anopheles gambiae sensu stricto) fitness. The hypotheses tested are that mosquito vector energetic reserves and fitness are negatively influenced by reductions in the red cell density of host human blood meals commensurate with those expected from severe anaemia. Methods Mosquitoes (An. gambiae s.s.) were offered blood meals of different packed cell volume(PCV) of human blood consistent with those arising from severe anaemia (15%) and normalPCV (50%). Associations between mosquito energetic reserves (lipid, glucose and glycogen)and fitness measures (reproduction and survival) and blood meal PCV were investigated. Results The amount of protein that malaria vectors acquired from blood feeding (indexed by haematin excretion) was significantly reduced at low blood PCV. However, mosquitoes feeding on blood of low PCV had the same oviposition rates as those feeding on blood of normal PCV, and showed an increase in egg production of around 15%. The long-term survival of An. gambiae s.s was reduced after feeding on low PCV blood, but PCV had no significant impact on the proportion of mosquitoes surviving through the minimal period required to develop and transmit malaria parasites (estimated as 14 days post-blood feeding). The impact of blood PCV on the energetic reserves of mosquitoes was relatively minor. Conclusions These results suggest that feeding on human hosts whose PCV has been depleted due to severe anaemia does not significantly reduce the fitness or transmission potential of malaria vectors, and indicates that mosquitoes may be able exploit resources for reproduction more efficiently from blood of low rather than normal PCV

    Linking Oviposition Site Choice to Offspring Fitness in Aedes aegypti: Consequences for Targeted Larval Control of Dengue Vectors

    Get PDF
    Controlling the mosquito Aedes aegypti, the predominant dengue vector, requires understanding the ecological and behavioral factors that influence population abundance. Females of several mosquito species are able to identify high-quality egg-laying sites, resulting in enhanced offspring development and survival, and ultimately promoting population growth. Here, the authors investigated egg-laying decisions of Ae. aegypti. Paradoxically, they found that larval survival and development were poorest in the containers females most often selected for egg deposition. Thus, egg-laying decisions may contribute to crowding of larvae and play a role in regulating mosquito populations. The authors also tested whether removal of the containers producing the most adult mosquitoes, a World Health Organization-recommended dengue prevention strategy, changes the pattern of how females allocate their eggs. Elimination of the most productive containers led to a more even distribution of eggs in one trial, but not another. These results suggest that behavioral adjustments by egg-laying females may lessen the effectiveness of a common mosquito control tactic. The authors advocate incorporating control strategies that take advantage of the natural egg-laying preferences of this vector species, such as luring egg-laying females to traps or places where their eggs will accumulate, but not develop

    A Virulent Wolbachia Infection Decreases the Viability of the Dengue Vector Aedes aegypti during Periods of Embryonic Quiescence

    Get PDF
    A new approach for dengue control has been proposed that relies on life-shortening strains of the obligate intracellular bacterium Wolbachia pipientis to modify mosquito population age structure and reduce pathogen transmission. Previously we reported the stable transinfection of the major dengue vector Aedes aegypti with a life-shortening Wolbachia strain (wMelPop-CLA) from the vinegar fly Drosophila melanogaster. Here, we report a further characterization of the phenotypic effects of this virulent Wolbachia infection on several life-history traits of Ae. aegypti. Minor costs of wMelPop-CLA infection for pre-imaginal survivorship, development and adult size were found. However, we discovered that the wMelPop-CLA infection dramatically decreased the viability of desiccated Ae. aegypti eggs over time. Similarly, the reproductive fitness of wMelPop-CLA infected Ae. aegypti females declined with age. These results reveal a general pattern associated with wMelPop-CLA induced pathogenesis in this mosquito species, where host fitness costs increase during aging of both immature and adult life-history stages. In addition to influencing the invasion dynamics of this particular Wolbachia strain, we suggest that the negative impact of wMelPop-CLA on embryonic quiescence may have applied utility as a tool to reduce mosquito population size in regions with pronounced dry seasons or in regions that experience cool winters

    Effects of co-habitation between Anopheles gambiae s.s. and Culex quinquefasciatus aquatic stages on life history traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effective measures for the control of malaria and filariasis vectors can be achieved by targeting immature stages of anopheline and culicine mosquitoes in productive habitat. To design this strategy, the mechanisms (like biotic interactions with conspecifc and heterospecific larvae) regulating mosquito aquatic stages survivorship, development time and the size of emerging adults should be understood. This study explored the effect of co-habitation between <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>on different life history traits of both species under different densities and constant food supply in the habitats of the same size under semi-natural conditions.</p> <p>Methods</p> <p>Experiments were set up with three combinations; <it>Cx. quinquefasciatus </it>alone (single species treatment), <it>An. gambiae </it>s.s. alone (single species treatment); and <it>An. gambiae </it>s.s. with <it>Cx. quiquefasciatus </it>(co-habitation treatment) in different densities in semi field situation.</p> <p>Results</p> <p>The effect of co-habitation of <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>was found to principally affect three parameters. The wing-lengths (a proxy measure of body size) of <it>An. gambiae </it>s.s. in co-habitation treatments were significantly shorter in both females and males than in <it>An. gambiae </it>s.s single species treatments. In <it>Cx. quinquefasciatus</it>, no significant differences in wing-length were observed between the single species and co-habitation treatments. Daily survival rates were not significantly different between co-habitation and single species treatments for both <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus</it>. Developmental time was found to be significantly different with single species treatments developing better than co-habitation treatments. Sex ratio was found to be significantly different from the proportion of 0.5 among single and co-habitation treatments species at different densities. Single species treatments had more males than females emerging while in co-habitation treatments more females emerged than males. In this study, there was no significant competitive survival advantage in co-habitation.</p> <p>Conclusion</p> <p>These results suggest that co-habitation of <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>in semi-natural conditions affect mostly <it>An. gambiae </it>s.s. body size. Hence, more has to be understood on the effects of co-habitation of <it>An. gambiae </it>s.s. and <it>Cx. quinquefasciatus </it>in a natural ecology and its possible consequences in malaria and filariasis epidemiology.</p

    The Demographic and Socioeconomic Factors Predictive for Populations at High-Risk for La Crosse Virus Infection in West Virginia

    Get PDF
    Although a large body of literature exists for the environmental risk factors for La Crosse virus (LACV) transmission, the demographic and socioeconomic risk factors for developing LACV infection have not been investigated. Therefore, this study investigated the demographic and socioeconomic risk factors for LACV infection in West Virginia from 2003 to 2007, using two forward stepwise discriminant analyses. The discriminant analyses were used to evaluate a number of demographic and socioeconomic factors for their ability to predict: 1) those census tracts with at least one reported case of LACV infection versus those census tracts with no reported cases of LACV infection and 2) to evaluate significantly high-risk clusters for LACV infection versus significantly low-risk clusters for LACV infection. In the first model, a high school education diploma or a general education diploma or less and a lower housing densit

    Generic Insect Repellent Detector from the Fruit Fly Drosophila melanogaster

    Get PDF
    Background: Insect repellents are prophylactic tools against a number of vector-borne diseases. There is growing demand for repellents outperforming DEET in cost and safety, but with the current technologies R&amp;D of a new product takes almost 10 years, with a prohibitive cost of $30 million dollar in part due to the demand for large-scale synthesis of thousands of test compounds of which only 1 may reach the market. R&amp;D could be expedited and cost dramatically reduced with a molecular/physiological target to streamline putative repellents for final efficacy and toxicological tests. Methodology: Using olfactory-based choice assay we show here that the fruit fly is repelled by not only DEET, but also IR3535 and picaridin thus suggesting they might have ‘‘generic repellent detector(s),’ ’ which may be of practical applications in new repellent screenings. We performed single unit recordings from all olfactory sensilla in the antennae and maxillary palps. Although the ab3A neuron in the wild type flies responded to picaridin, it was unresponsive to DEET and IR3535. By contrast, a neuron housed in the palp basiconic sensilla pb1 responded to DEET, IR3535, and picaridin, with apparent sensitivity higher than that of the DEET detectors in the mosquitoes Culex quinquefasciatus and Aedes aegypti. DmOr42a was transplanted from pb1 to the ‘‘empty neuron’ ’ and showed to be sensitive to the three insect repellents. Conclusions: For the first time we have demonstrated that the fruit fly avoids not only DEET but also IR3535 and picaridin, and identified an olfactory receptor neuron (ORN), which is sensitive to these three major insect repellents. We have als
    corecore