40 research outputs found

    HAAD: A Quick Algorithm for Accurate Prediction of Hydrogen Atoms in Protein Structures

    Get PDF
    Hydrogen constitutes nearly half of all atoms in proteins and their positions are essential for analyzing hydrogen-bonding interactions and refining atomic-level structures. However, most protein structures determined by experiments or computer prediction lack hydrogen coordinates. We present a new algorithm, HAAD, to predict the positions of hydrogen atoms based on the positions of heavy atoms. The algorithm is built on the basic rules of orbital hybridization followed by the optimization of steric repulsion and electrostatic interactions. We tested the algorithm using three independent data sets: ultra-high-resolution X-ray structures, structures determined by neutron diffraction, and NOE proton-proton distances. Compared with the widely used programs CHARMM and REDUCE, HAAD has a significantly higher accuracy, with the average RMSD of the predicted hydrogen atoms to the X-ray and neutron diffraction structures decreased by 26% and 11%, respectively. Furthermore, hydrogen atoms placed by HAAD have more matches with the NOE restraints and fewer clashes with heavy atoms. The average CPU cost by HAAD is 18 and 8 times lower than that of CHARMM and REDUCE, respectively. The significant advantage of HAAD in both the accuracy and the speed of the hydrogen additions should make HAAD a useful tool for the detailed study of protein structure and function. Both an executable and the source code of HAAD are freely available at http://zhang.bioinformatics.ku.edu/HAAD

    A sequence that directs transcriptional initiation in yeast

    Full text link
    While RNA polymerase II of the yeast Saccharomyces cerevisiae initiates transcription at discrete sites, these sites are located over a wide range of distances from the TATA box for different genes. This variability has led to a number of proposals for consensus sequences located at the initiation site which, in conjunction with the TATA box, would direct initiation. We tested this hypothesis via oligonucleotide-directed mutagenesis, by placing the sequence CAAG, a member of one of these consensus sequences, upstream of the coding sequence of the CYC7 gene at a site at which initiation does not occur. The distance between the TATA sequence and this putative initiation site was varied by inserting it into the wild-type gene and three deletion mutants. The results demonstrated that this sequence can serve as an initiation site when located 49, 77, or 106 bp from the TATA sequence, but not when located 30 bp away.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46971/1/294_2004_Article_BF00312597.pd

    Variation in RNA Virus Mutation Rates across Host Cells

    Get PDF
    It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10−6 to 10−4 substitutions per nucleotide per round of copying (s/n/r) and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV), which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10−5 s/n/r). Cell immortalization through p53 inactivation and oxygen levels (1–21%) did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature
    corecore