5,220 research outputs found
A literature review on surgery for cervical vagal schwannomas
Cervical vagal schwannoma is a benign, slow-growing mass, often asymptomatic, with a very low lifetime risk of malignant transformation in general population, but diagnosis is still a challenge. Surgical resection is the treatment of choice even if its close relationship with nerve fibres, from which it arises, threats vagal nerve preservation. We present a case report and a systematic review of literature. All studies on surgical resection of cervical vagal schwannoma have been reviewed. Papers matching the inclusion criteria (topic on surgical removal of cervical vagal schwannoma, English language, full text available) were selected. Fifty-three patients with vagal neck schwannoma submitted to surgery were identified among 22 studies selected. Female/male ratio was 1.5 and median age 44 years. Median diameter was 5 cm (range 2 to 10). Most schwannoma were asymptomatic (68.2%) and received an intracapsular excision (64.9%). Postoperative symptoms were reported in 22.6% of patients. Cervical vagal schwannoma is a benign pathology requiring surgical excision, but frequently postoperative complications can affect patients lifelong, so, surgical indications should be based carefully on the balance between risks and benefits
Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection
Intense tropical rainfall occurs in a narrow belt near the equator, called the inter-tropical convergence zone (ITCZ). In the past decade, the atmospheric energy budget has been used to explain changes in the zonal-mean ITCZ position. The energetics framework provides a mechanism for extratropics-to-tropics teleconnections, which have been postulated from paleoclimate records. In atmosphere models coupled with a motionless slab ocean, the ITCZ shifts toward the warmed hemisphere in order for the Hadley circulation to transport energy toward the colder hemisphere. However, recent studies using fully coupled models show that tropical rainfall can be rather insensitive to extratropical forcing when ocean dynamics is included. Here, we explore the effect of meridional Ekman heat advection while neglecting the upwelling effect on the ITCZ response to prescribed extratropical thermal forcing. The tropical component of Ekman advection is a negative feedback that partially compensates the prescribed forcing, whereas the extratropical component is a positive feedback that amplifies the prescribed forcing. Overall, the tropical negative feedback dominates over the extratropical positive feedback. Thus, including Ekman advection reduces the need for atmospheric energy transport, dampening the ITCZ response. We propose to build a hierarchy of ocean models to systematically explore the full dynamical response of the coupled climate system
How Did the Gene Become a Chemical Compound? The Ontology of the Gene and the Patenting of DNA
International audienceThe ability to patent is bounded by a set of conditions that define what is patentable and what is not. In the 1980s, the problem of the patentability of genes was solved by the use of an analogy between genes and chemical compounds. In this article we analyze the process of the reduction of the gene to a chemical compound, and show how this analogy made the practice of gene patenting routine long before it came to public attention. When we did eventually see public controversies surrounding gene patenting in the 1990s, the chemical analogy allowed patent offices in the US and Europe to 'close down' these debates by presenting the issues as merely technical
Crystal-Size Effects on Carbon Dioxide Capture of a Covalently Alkylamine-Tethered Metal-Organic Framework Constructed by a One-Step Self-Assembly
To enhance the carbon dioxide (CO2) uptake of metal-organic frameworks (MOFs), amine functionalization of their pore surfaces has been studied extensively. In general, amine-functionalized MOFs have been synthesized via post-synthetic modifications. Herein, we introduce a one-step construction of a MOF ([(NiLethylamine)(BPDC)]=MOFNH2; [NiLethylamine]2+=[Ni(C12H32N8)]2+; BPDC2-=4,4???-biphenyldicarboxylate) possessing covalently tethered alkylamine groups without post-synthetic modification. Two-amine groups per metal centre were introduced by this method. MOFNH2 showed enhanced CO2 uptake at elevated temperatures, attributed to active chemical interactions between the amine groups and the CO2 molecules. Due to the narrow channels of MOFNH2, the accessibility to the channel of CO2 is the limiting factor in its sorption behaviour. In this context, only crystal size reduction of MOFNH2 led to much faster and greater CO2 uptake at low pressures.open
Flavor in Minimal Conformal Technicolor
We construct a complete, realistic, and natural UV completion of minimal
conformal technicolor that explains the origin of quark and lepton masses and
mixing angles. As in "bosonic technicolor", we embed conformal technicolor in a
supersymmetric theory, with supersymmetry broken at a high scale. The exchange
of heavy scalar doublets generates higher-dimension interactions between
technifermions and quarks and leptons that give rise to quark and lepton masses
at the TeV scale. Obtaining a sufficiently large top quark mass requires strong
dynamics at the supersymmetry breaking scale in both the top and technicolor
sectors. This is natural if the theory above the supersymmetry breaking also
has strong conformal dynamics. We present two models in which the strong top
dynamics is realized in different ways. In both models, constraints from
flavor-changing effects can be easily satisfied. The effective theory below the
supersymmetry breaking scale is minimal conformal technicolor with an
additional light technicolor gaugino. We argue that this light gaugino is a
general consequence of conformal technicolor embedded into a supersymmetric
theory. If the gaugino has mass below the TeV scale it will give rise to an
additional pseudo Nambu-Goldstone boson that is observable at the LHC.Comment: 37 pages; references adde
The stellar halo of the Galaxy
Stellar halos may hold some of the best preserved fossils of the formation
history of galaxies. They are a natural product of the merging processes that
probably take place during the assembly of a galaxy, and hence may well be the
most ubiquitous component of galaxies, independently of their Hubble type. This
review focuses on our current understanding of the spatial structure, the
kinematics and chemistry of halo stars in the Milky Way. In recent years, we
have experienced a change in paradigm thanks to the discovery of large amounts
of substructure, especially in the outer halo. I discuss the implications of
the currently available observational constraints and fold them into several
possible formation scenarios. Unraveling the formation of the Galactic halo
will be possible in the near future through a combination of large wide field
photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes.
Full-resolution version available at
http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
