64 research outputs found

    The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review

    Get PDF
    PMCID: PMC3408383The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/75. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Method of analysis of the spatial galaxy distribution at gigaparsec scales. I. Initial principles

    Full text link
    Initial principles of a method of analysis of the luminous matter spatial distribution with sizes about thousands Mpc are presented. The method is based on an analysis of the photometric redshift distribution N(z) in the deep fields with large redshift bins \Deltaz=0.1{\div}0.3. Number density fluctuations in the bins are conditioned by the Poisson's noise, the correlated structures and the systematic errors of the photo-z determination. The method includes covering of a sufficiently large region on the sky by a net of the deep multiband surveys with the sell size about 10^{\circ}x10^{\circ} where individual deep fields have angular size about 10'x10' and may be observed at telescopes having diameters 3-10 meters. The distributions of photo-z within each deep field will give information about the radial extension of the super large structures while a comparison of the individual radial distributions of the net of the deep fields will give information on the tangential extension of the super large structures. A necessary element of the method is an analysis of possible distortion effects related to the methodic of the photo-z determination.Comment: 12 page

    Neuromuscular training with injury prevention counselling to decrease the risk of acute musculoskeletal injury in young men during military service: a population-based, randomised study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapidly increasing number of activity-induced musculoskeletal injuries among adolescents and young adults is currently a true public health burden. The objective of this study was to investigate whether a neuromuscular training programme with injury prevention counselling is effective in preventing acute musculoskeletal injuries in young men during military service.</p> <p>Methods</p> <p>The trial design was a population-based, randomised study. Two successive cohorts of male conscripts in four companies of one brigade in the Finnish Defence Forces were first followed prospectively for one 6-month term to determine the baseline incidence of injury. After this period, two new successive cohorts in the same four companies were randomised into two groups and followed prospectively for 6 months. Military service is compulsory for about 90% of 19-year-old Finnish men annually, who comprised the cohort in this study. This randomised, controlled trial included 968 conscripts comprising 501 conscripts in the intervention group and 467 conscripts in the control group. A neuromuscular training programme was used to enhance conscripts' motor skills and body control, and an educational injury prevention programme was used to increase knowledge and awareness of acute musculoskeletal injuries. The main outcome measures were acute injuries of the lower and upper limbs.</p> <p>Results</p> <p>In the intervention groups, the risk for acute ankle injury decreased significantly compared to control groups (adjusted hazards ratio (HR) = 0.34, 95% confidence interval (95% CI) = 0.15 to 0.78, <it>P </it>= 0.011). This risk decline was observed in conscripts with low as well as moderate to high baseline fitness levels. In the latter group of conscripts, the risk of upper-extremity injuries also decreased significantly (adjusted HR = 0.37, 95% CI 0.14 to 0.99, <it>P </it>= 0.047). In addition, the intervention groups tended to have less time loss due to injuries (adjusted HR = 0.55, 95% CI 0.29 to 1.04).</p> <p>Conclusions</p> <p>A neuromuscular training and injury prevention counselling programme was effective in preventing acute ankle and upper-extremity injuries in young male army conscripts. A similar programme could be useful for all young individuals by initiating a regular exercise routine.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier number <a href="http://www.clinicaltrials.gov/ct2/show/NCT00595816">NCT00595816</a>.</p

    Differential neuromuscular training effects onACL injury risk factors in"high-risk" versus "low-risk" athletes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuromuscular training may reduce risk factors that contribute to ACL injury incidence in female athletes. Multi-component, ACL injury prevention training programs can be time and labor intensive, which may ultimately limit training program utilization or compliance. The purpose of this study was to determine the effect of neuromuscular training on those classified as "high-risk" compared to those classified as "low-risk." The hypothesis was that high-risk athletes would decrease knee abduction moments while low-risk and control athletes would not show measurable changes.</p> <p>Methods</p> <p>Eighteen high school female athletes participated in neuromuscular training 3×/week over a 7-week period. Knee kinematics and kinetics were measured during a drop vertical jump (DVJ) test at pre/post training. External knee abduction moments were calculated using inverse dynamics. Logistic regression indicated maximal sensitivity and specificity for prediction of ACL injury risk using external knee abduction (25.25 Nm cutoff) during a DVJ. Based on these data, 12 study subjects (and 4 controls) were grouped into the high-risk (knee abduction moment >25.25 Nm) and 6 subjects (and 7 controls) were grouped into the low-risk (knee abduction <25.25 Nm) categories using mean right and left leg knee abduction moments. A mixed design repeated measures ANOVA was used to determine differences between athletes categorized as high or low-risk.</p> <p>Results</p> <p>Athletes classified as high-risk decreased their knee abduction moments by 13% following training (Dominant pre: 39.9 ± 15.8 Nm to 34.6 ± 9.6 Nm; Non-dominant pre: 37.1 ± 9.2 to 32.4 ± 10.7 Nm; p = 0.033 training X risk factor interaction). Athletes grouped into the low-risk category did not change their abduction moments following training (p > 0.05). Control subjects classified as either high or low-risk also did not significantly change from pre to post-testing.</p> <p>Conclusion</p> <p>These results indicate that "high-risk" female athletes decreased the magnitude of the previously identified risk factor to ACL injury following neuromuscular training. However, the mean values for the high-risk subjects were not reduced to levels similar to low-risk group following training. Targeting female athletes who demonstrate high-risk knee abduction loads during dynamic tasks may improve efficacy of neuromuscular training. Yet, increased training volume or more specific techniques may be necessary for high-risk athletes to substantially decrease ACL injury risk.</p

    Patellofemoral pain syndrome (PFPS): a systematic review of anatomy and potential risk factors

    Get PDF
    Patellofemoral Pain Syndrome (PFPS), a common cause of anterior knee pain, is successfully treated in over 2/3 of patients through rehabilitation protocols designed to reduce pain and return function to the individual. Applying preventive medicine strategies, the majority of cases of PFPS may be avoided if a pre-diagnosis can be made by clinician or certified athletic trainer testing the current researched potential risk factors during a Preparticipation Screening Evaluation (PPSE). We provide a detailed and comprehensive review of the soft tissue, arterial system, and innervation to the patellofemoral joint in order to supply the clinician with the knowledge required to assess the anatomy and make recommendations to patients identified as potentially at risk. The purpose of this article is to review knee anatomy and the literature regarding potential risk factors associated with patellofemoral pain syndrome and prehabilitation strategies. A comprehensive review of knee anatomy will present the relationships of arterial collateralization, innervations, and soft tissue alignment to the possible multifactoral mechanism involved in PFPS, while attempting to advocate future use of different treatments aimed at non-soft tissue causes of PFPS

    ACL injury prevention, more effective with a different way of motor learning?

    Get PDF
    What happens to the transference of learning proper jump-landing technique in isolation when an individual is expected to perform at a competitive level yet tries to maintain proper jump-landing technique? This is the key question for researchers, physical therapists, athletic trainers and coaches involved in ACL injury prevention in athletes. The need for ACL injury prevention is clear, however, in spite of these ongoing initiatives and reported early successes, ACL injury rates and the associated gender disparity have not diminished. One problem could be the difficulties with the measurements of injury rates and the difficulties with the implementation of thorough large scale injury prevention programs. A second issue could be the transition from conscious awareness during training sessions on technique in the laboratory to unexpected and automatic movements during a training or game involves complicated motor control adaptations. The purpose of this paper is to highlight the issue of motor learning in relation to ACL injury prevention and to post suggestions for future research. ACL injury prevention programs addressing explicit rules regarding desired landing positions by emphasizing proper alignment of the hip, knee, and ankle are reported in the literature. This may very well be a sensible way, but the use of explicit strategies may be less suitable for the acquisition of the control of complex motor skills (Maxwell et al. J Sports Sci 18:111-120, 2000). Sufficient literature on motor learning and it variations point in that direction

    Terrestrische und semiterrestrische Ökosysteme

    Get PDF
    corecore